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Invariant connections on symmetric spaces
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ABSTRACT: A classical problem in Differential Geometry, the determination of the invariant affine
connections in the simply connected irreducible symmetric spaces, is equivalent to the algebraic
problem of computing the set Homg{T @r T, T) for any Zg-graded simple Lie algebra L = S @ 7.
The algebraic problem is solved using known information about the Lie triple system structure on
T, because the simple Zs-graded Lie algebra L = S@ T is just the embeddiug for the simple Lie
triple system T, It turns out that the set of homomorphisms contains nown trivial elements if and
only if T is related to a simple Jordan algebra. Now it is possible to come back to the geometric
context to describe the affine connections and express the holonomy and torsion and curvature
tensors in algebraic terms.

1. INTRODUCTION.

In another paper of these proceedings [1], it is explained how the geometrical
problem of describing the invariant affine connections on a reductive homogeneous
space M = G/H is equivalent to the algebraic problem of describing the multipli-
cations o : m x m— m with (Ad h)a(x,y) = a((Ad h)(z), (Adk)(y)) for any h € H
and any ®,y € m, where m is a vector subspace of the Lie algebra g of & such that

g=mdh

(where b is the Lie subalgebra of g which corresponds to the closed subgroup H
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of G} and AdH(m) C m, a condition equivalent to [h,m] C m if H is connected.
Such decomposition is called a reductive decomposition. This interplay between
Geometry and Algebra was proved by Nomizu in [2].

The aim of this paper is to study the connection algebras (m, ) that appear in
the irreducible symmetric spaces, a special type of reductive homogeneous spaces.

If M is a manifold and ¥V an affine connection, (M, V) is a symmetric space
if for each point p € M there exists a central symmetry S, with center at p. -
Any symmetric space is isomorphic to a space of the form G/H, where the closed
subgroup H C ( is such that Go° C H C G7, with o an involutive automorphism
of the Lie group &, ¥ the subgroup of fixed points under ¢ and G,? the connected
component of the identity in G°.

For any symmetric space G/ H , there exists a reductive decomposition g = hdm
satisfying [m, m] C h, because do provides a Zy-gradation (h and g, as before, are
the Lie algebras of # and G respectively). This kind of decomposition is called a
symetric decomposition. The converse is true,

For the simply connected irreducible symmetric spaces M = G/H, the Lie
algebra g = h & m is graded-simple. Therefore the geometric problem of comput-
ing invariant afline connections in a simply connected irreducible symmetric space
M = G/H is equivaleni, after applying Nomizu’s result, to the algebraic problem of
computing the set Homg(m®g m, m), where g = h@m is a graded-simple Z-graded
Lie algebra, because each homomorphism of h-modules & € Homg (m®g m, m) deter-
mines an R-bilinear multiplication & : mxm — msuch that ad |y, C Der(m, ) and,
since H is connected, this is equivalent to (Ad h)a(z,y) = a((Ad k)(2), (Ad h)(y))
for any h € H and any z,y € m; that is, it determines a connection algebra and so

an invariant affline connection.

In the next section, we will present briefly the solution of the general problem
of determining the set Homg{T'@p T, T} for any simple finite-dimensional Zg-graded
Lie algebra I, = S @ T over an arbitrary field F of characteristic zero. In particu-
lar, in the real case we will have obtained an algebraic description of all invariant
affine connections in irreducible symmetric spaces (this was done previously in the
Riemannian case, using different methods, by Laquer [3,4]). This description will
be used in section 3 to determine the holonomy algebra and give explicit formulas
for the torsion and curvature tensors associated to each connection.
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2. THE SOLUTION OF THE ALGEBRAIC PROBLEM.

The determination of the set Homg (T @p T, T) for any Zj-graded simple Lie
algebra L = S@®T has been done in [5}, the purpose of this section is to present the
main result in [5, Theorem 4.3] explaining briefly how the structure of a Lie triple
system can be effectively used to compute those sets without decomposing T'®r T.

From now on all the algebras and systems considered will be assumed to be
finite-dimensional over a field F' of characteristic 0.

2.1. Basic definitions.

A Lie triple system (L.t.s) is a vector space T endowed with a trilinear product
[z, v, #] satisfying:
i) {z,2,4=0,
ii) (2,3 2]+ [y, 2,21 + [2,2,4] = 0,
iii) [#,y,~] € Der T,
for any z,3,z € T. The set 5 = span ([z,y,—) | z,y € T} is a Lie subalgebra of
lincar mappings on T and the Zy-graded Lie algebra L(T) = S & T, whose bracket

operation is given by:
[s1,52] 1= 8189 € S (the multiplication in 5)
[5,] := s(t) € T (the natural action)
[tl,ig] = [tl,tg,"'] S S

for any s,81,57 € S and t,41,¢2 € T, is called the standard embedding of T'. Note
that § and T are the even and odd part of the embedding and T is a faithful S-
module. Thus any Lie triple system is nothing else but the odd part of a Zs-graded
Lie algebra with product [z,y, 2] = [[2, 4], 2].

Among the Lie triple systems we are interested in the so called stmple ones
(without nontrivial ideals). They are just the odd part of simple Zg-graded Lie
algebras (see [6]). Consequently the problem now is to compute the set Homs(T ®p
T, T) for any simple Lie triple system 7' with standard embedding LT =5aT.

© 2.2, Examples.

1t is not difficult to get elementary examples of simple L.t.s. We point out
three of them which are specially relevant for our purposes. First we note that
if T is a (simple) L.ts. and g € #\ {0} = F*, the vector space T' with the
product [2,y, 2] = p[z,y,z] is a (simple) L.t.s. {in case y € F? both systems are
isomorphic). '

Example 1. Any simple Lie algebra A is a simple L.t.s under the trilinear
product {z,y,z] = [[#,4],2] ([,] the Lie bracket in A). In this case S = ad A =
Der A ~ A and the standard embedding is L{A4) = Der A& A ~ A® A. Moreover
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A is the adjoint module for $ and therefore the Lie bracket in A is a nonzero skew- '
symmetric element in Homg(A® A, A). For any p € F*, we shall refer to the system
(4,1, ,]¥) as a L.t.s of adjoint fype.

Over algebraically closed fields, it is known ([7,8}) that

2 if A is of type An (n > 2),

dimHom (A ® A, A) = {
4 ) 1 otherwise.

Consequently, Homg(A® 4, A) is spanned by the “Lie bracket in A” for types other
than A, (n > 2). But, what happens in the remaining cases? The answer can be
found in the following example.

Example 2. For any simple Jordan algebra J of degree n > 2 with generic
trace ¢, the set Jo of trace zero elements in J becomes a simple L.t.s via [z, ¥, 2] =
(z2)y — x(zy) (the associator of z, 7 and y). Since [2,y,~] = [Ry, Rs] (Rou = uz),
it follows that S = [Ry, Ry} = DerJ and the standard embedding for this system is
L(Jy) = Der J @ Jo =~ Der J @ Ry, In this case we can obtain a symmetric element
in Homg(Jy ® Jy, Jo) by means of

J(]XJ()—)J()

1
ER@Y Wy =y — ;t(my)l

(that is, the projection of the element xy onto Jo) and this product is nontrivial if
and only if n > 8. The systems (Jo, [, , ]#) will be said to be of Jordan type.
In case F' is algebraically closed, if J is a simple Jordan algebra of degree n > 3
over F, then either:
i) J is the algebra of symmetric n x n matrices, In this case Der J is isomorphic to
the set of skew-symmetric matrices ([9, Theorem V1.9]) and L(Jo) = sl(n, F).
i) J is the algebra of symmetric 2n x 2n matrices with respect to the standard
symplectic involution. Again in this case DerJ is isomorphic to the skew-
symmetric matrices with respect to this involution [9, Theorem VI1.9] and
L{Jo) ~ sl(2n, F).
iii} J is the exceptional simple Jordan algebra, Der J is a Lie algebra of type Fy
and L(Jo) is a Lie algebra of type Fg [9, Section IV.11].

In all these cases, dim Homg(Jy®Jy, Jo) > 1, and the main Theorem will assert
that, in fact, it is 1.
iv) J = Mat,(F)*. In this case Jo = sl{n, F) and Der J = ad Jy. Then the triple
system Jp is both of adjoint type (An_1) and of Jordan type.
Therefore, Homs (T ®p T,T) is spanned by the “Lie bracket in 5” and the
“Jordan-product 2 for the adjoint type Ay (n > 2). This is the answer to the
question in Example 1.
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"The situation in iv) can be settled in a more general context over arbitrary fields
of characteristic 0, as the following and final example ([9, Section V.7]) shows:

Example 3. Let (A, ) be a central simple associative involutorial algebra of
degree n > 3 with j an involution of second kind and center P = F[q], a quadratic
extension of the base field or isomorphic to F' x F. Then the Jordan algebra J =
H(A,7)* of j-symmetric elements of A is central simple of type A and degree n
(that is, after extension by scalars it becomes a total # x n matrix algebra} and the
derived algebra S(A,j)o = [S(4,7),S(A, )] of the Lie algebra S(A,j)~ of j-skew
elements of A is a central simple Lie algebra of type A,,—1 [10, Theorem X.8] (Note
that if P = F@ F, A = B & B, with B a central simple associative algebra and
4 the exchange involution: j(by,bs) = (bs,d1). So we can identify H(A,j)* ~ B+
and S(A,j)~ = B~). The converse is also true: any central simple Jordan algebra
of type A and degree n > 3 can be obtained in this manner.

If we consider the L.t.s. of Jordan type T' = Jo = H(4,i)o={z € H(A,j) |
t() =0} (¢ the generic trace of H (4, j)), we have that S=Der J=ad S(4, j)o|r(4,5)0
[9]. 7

As the linear map = — qz of Jy onto S(A, j)o is an isomorphism of S(A, j)e-
modules, our L.t.s. is both of adjoint type and of Jordan type, and the bracket in
S(A, §)o under this isomorphism provides the product

ey =qz,y],

which is a nonzero skew-symmetric element in Homper.7{Jo ® Jo, Jo). Consequently
the dimension of this space is at least 2, We shall refer to the systems (H (A, j)o,
[, ]#) as L.t.s. of adjoint-Jordan type.

2.3. The centroid of a Lie triple system.

A natural and useful tool in the study of simple algebraic structures is the
centroid, Given any L.t.s. T' we define the centroid of T in the natural way as I' =
{2 € Endp(T) | alfz,1,2]) = [2(2), v, 4] = [2,a(y), 2] = [, 4, 0(z)] a3,z € T},
If T'is simple, T is a field contained in the centroid of L(T"), and I" over I' remains
) simple by scalars extensions.

A technical result in [5, Lemma 4.1] shows that for any simple Lie triple system
T with centroid T, in order to determine Homg (T ®p T, T') it is enough to determine
Homg (7' ®r T, T). ‘

In this way, our problem is reduced to the special case of central simple L.t.s. for
which we can extend scalars up to an algebraically closed field. Then, the problem
becomes to compute the set of homomorphisms for simple L.t.s. over algebraically
closed fields. '

Now we shall sketch how to solve this situation.
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2.4. Solution in the algebraically closed case.

In this paragraph let T be a simple L.t.s. over an algebraically closed field F
and L(T) = S & T be its standard embedding.

The complete classification of such systems was obtained by Lister in 1952 [6]. .
In 1980 Faulkner [11] gave a method based on the use of the affine Dynkin diagrams
(see [12, Ch.8]) that provides an useful and quicker classification. This one will be
used here to deduce our results.

From [6,11] the algebra L(T) is a simple ungraded algebra unless T is of adjoint
type, and S is a reductive algebra with dim Z(5) < 1, consequently the derived
subalgebra {3, 5] of S is semisimple. In case Z(S) = 0, T' is an irreducible selfdual
module for S; otherwise T' = T} @ 7%, T; being irreducible dual S-modules.

The central idea in Faulkner’s classification is to associate a diagram to each
~simple L.t.s. T, starting with the Dynkin diagram of the semisimple algebra (S, 5]

and adding a node for each [S, S)-irreducible component of 7' (which represents
its minimum weight). All the nodes in the diagrams are equipped by numerical
labels representing the linear dependence of the roots of [S, 5] and the weights of T
involved in the diagrams. These weighted diagrams contain the whole information
on the Lie algebra S and the S-module T". They.can be grouped into four types.

i} Diagrams representing simple L.t.s. of adjoint type. For these ones, the
problem was already solved.

ii} Diagrams representing non irreducible simple L.t.s.. Given such a system
T, the center of S is one-dimensional and T' = T} T4 with T; S-irreducible. In this
case, there exists a nonzero central element z € S with ad z|r, = 1 and ad z|p, = —1.
Therefore T'@ T is the sum of the eigenspaces 2, 0, —2 and so Homg (T @ T,T) = 0.

iil) Diagrams representing irreducible simple L.t.s with trivial O-weight space,
and

iv) Diagrams representing irreducible simple L.t.s. with nontrivial 0-weight
space.

In the two latter cases the corresponding L.t.s. are selfdual modules and the
determination of the set Homg (T'®T, T") can be reduced to the problem of bounding
the dimension of a certain subspace in the 0-weight space of T' (which is 0 for systems
of type iii)} because of the following result [3, Lemma 3.3] and [8]:

LEMMA Let S be a semisimple Lie algebra, H a Cartan subalgebra of S, T = V(A)
an irreducible selfdual module with highest weight ) relative to H, vy and v.j
nonzero weight vectors for A and —A. For any root a relative to I let S, be the
corresponding root space. If Ty is the 0-weight space in T, the linear map

¢ :Homg(T®T,T) — Tg ={v€Ty|Sa-v=0 VYa LA}
v = p(va@voy)
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is well defined and one-to-one. That is, dimHomg(T' ® T, T) < dim 7.

So, given a simple L.t.s. T of type iii), from the previous Lemma we get that
Homg(T' ® T,7') = 0; and given a T' of type iv), by using the technical Lemma,
in {3, Lemma 3.4] and the information provided by the affine diagrams of types
i), iii) and iv) it is possible to obtain that the space Homg(T ® T, T) is trivial
or one-dimensional, turning out that Homg(T ® 7,7) = 0 unless T is a simple
L.t.s. of Jordan type (the L.t.s. i), ii), iii) described in Example 2), in this case
Homg (T'® T, T) is spanned by the product - (J is not of type A).

2.5. The main Theorem.

Now, taking into account the considerations above, we can establish the main
result in [5, Theorem 4.3]:

THEOREM Let T' be a simple Lie triple system over a field F' of characteristic zero
with centroid T and let L = S T be iis standard embedding. Then Hom,g(T Rp
T,T) = 0 unless either:

a) T is of adjoint type with S being a central simple Lie algebra over T of type
diferent from A, (n > 2). In this case Homg(T @p T, T') ~ Homg (S @ S, 5),
which is spanned over T' by the Lie multiplication in S, or

b) there exists a central simple Jordan algebra J of degree n > 3 over I' and a
nonzero scalar p € I' (which can be taken modulo I'?) such that T is the Lie
triple system (Jo,[, , 1#). In this case either:

i) J is not of type A over T, then Homg(T®r T, T) = Homper s {Jo ®F Jo, Jo)
is spanned over I' by the product z - y,

i) J = H(A,j) for some central simple associative involutorial algebra (4, j)
of second kind over T'. Let P =T'q) (0 # ¢* € T') be the center of A. Then
Homg(T' @p T,T) = HQmDerJ(Jﬂ ®r Jo,Jo) = Homga 51, (H{A, 7)o ®r
H(A, 7)o, H(A, j)o) is spanned over T by the products - and *.

~ From the point of view of nonassociative algebras, this result points out the
“central role played by the multiplication ., defined in the set Jy of the trace zero
" elements in a Jordan algebra J, in the computation of the sets Homg (TeT,T).
'The restriction of the Theorem to the real field gives us the invariant affine
connections on the irreducible symmetric spaces. So, in a sense, we can say that
the Jordan algebras are responsible for the existence of noncanonical connections

on the symmetric spaces. .
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3. APPLICATIONS TO DIFFERENTIAL GEOMETRY.

In this section we are going to compute some important geometric objects in
a symmetric space, namely, the torsion and curvature tensors and the holonomy
algebra associated to the invariant affine connections on it.

First of all, we will get expressions for these objects in any reductive homo-
geneous space in terms of the multiplication in the associated connection algebra.
Afterwards we will specialize the previous computations to the symmetric spaces,
because for these spaces we know the concrete connection algebras (thanks to the
central Theorem in Section 2).

The torsion and curvature tensors are the most important tensors associated
to an affine connection V, and they are given by the following formulas:

- 'Torsion tensor: T'(X,Y)=VxY - VyX — [X,Y]
— Curvature tensor: R(X,Y)}Z =VxVyZ —~VyVxZ - Vx,v|2

Now, if M = G/H is a reductive homogeneous space with reductive decompo-
sition g = h®m and V is a G-invariant affine connection, let & : m x m — m be the
associated multiplication by Nomizu’s result. In this case the torsion and curvature
tensors can be expressed in terms of the multiplication o by means of:

T(X,Y) = a(X,Y) = (¥, X) = [X, Y]
R(X,Y}Z = o(X, a(Y, Z)) ~ alY, (X, Z)) — a{[X, Y]m, Z) - [X, Y], Z]

for any X,Y,Z € m, where Z,, and Z;, denote the projections of Z € g onto m and
h respectively, and we are identifying m with the tangent space Tz M.
If M is symmetric, the projection over m of the bracket of two elements in m

is zero, hence: _
T(X,Y) =a{X,Y)— (Y, X)
R(X,Y)Z =a(X,a(Y,Z)) — oY, a(X, Z)) - [X, Y]y, Z].

On the other hand, the holonomy algebra Hol V is the smallest Lie subalgebra
of Endg(m] containing R(X,Y) for all X,¥ € m and closed under commutation by

Vx for any X € m.
The previous facts lead us to introduce the following definitions:
Given a Lie triple system T with standard embedding L{T) = S®T and given
« € Homs(T'®p T, T), we define:
1) Torsion tensor: T*(x,y) = afz,y) — a(y, =)
iij Curvature tensor: R%(z,y)z = a(x, a(y, 2)) ~ a(y, ofz, 2)) = [z, 4, 2]
iii) Holonomy algebra: Hol®*(T") == the smallest subalgebra of Endp T contain-
ing R*(x,y) for all z,y € T and closed under commutation by the operators
a(z,—).
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We are going to compute all these concepts for any simple Lie triple system
T over an arbitrary field F of characteristic zero. In the particular case F = R,
each o € Homg(T ®@r T,T) corresponds to an invariant affine connection in the
symmetric space so that 7%, R* and I-Io_l“ are the true torsion tensor, curvature
tensor and holonomy algebra associated to the connection.

According to the main theorem in Section 2 we can assume that T is a central
simple Lie triple system over F with standard embedding L(T) = § @ T and the
pair (7', ) has one of the following forms:

I) Trivial case: a =10

Clearly we have for any 2,y € T

T*(z,y) =0
Rﬂ"(rﬂ, y) = —[:E,y, _']
Hol®(7) = alg{[z,y,—] | z,y € T) =S

IT) Adjoint type: there exists a central simple Lie algebra S and p, 5 € e =
F\ {0} such that 7' =S and for any z,y € T"

{ [z,9,-]= F‘ad[w:y]
a(z,y) = nlx,y]
where [, ] is the product in S.
Immediately we obtain in this case
T*(z,y) = 2z, y]
R¥(z,y) = (" = p)adle,y]
0 if =1

Heol®(T) =
) {adSES if pt o P

I1IT} Jordan type: there exists a centra,l'simple Jordan algebra J of degree
n > 3 with generic trace £ and p,5 € F* such that T = Jo = {z &€ J | t(x) = 0} is
the set of trace zero elements and for any =,y € Jy:

{ [z, y, ~] = p[R, Ry]l»’o
afe,y)=nz-y
where z -y = ay — 11(zy)l and zy is the product in J.

In order to compute the holonomy we need a previous result:

LEMMA Let J be a central simple Jordan algebra of degree n > 3 with generic trace’
t and Jo = {2 € J | #(z) = 0} in which we consider the product z -y = zy— Lt{xy)1
and the trace form t(z,y) = t(zy).
Then the derivation algebra and the Lie multiplication algebra of (Jy, -) are the
Lie algebras given by:
Der(Jo, ) = {d|s, :d € DerJ} (=~ DerJ)
Lie(Jq, -) = sl(Jp)
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Furthermore, (Jy, ) is simple.

Proof: 1If (a, b, ¢) = {ab)e — a(bc) = [R., R,](b) is the associator in J and (a, b, ¢) =
{a-b) c—a-(b-c) the associator in (Jg, ), it is straightforward to check that

(a,b,cf = (a,b,c) — %(t(a,b)c— 15, c)a) (%)
for any a, b, ¢ € Jy. Therefore for any ,y € Jy
(2 2,y,2) = %(t(m,y)m vw—i(x- e, y)z).
For any d € Der(Jy, -), its action on this equality gives
(t{d, v) +1(2,dy)) ¢ -2 — ((d(e - ), 4) +2(e - 2, dy)) & = 0

for any =,y € Jo. Since the degree of J is > 3, the set of elements @ & Jp such that
z and z - ¢ are linearly independent is a dense subset in the Zariski topology, we
obtain from the above that '

t(de, y) + (2, dy) =0

for any 2,y € Jy. That is, Der(Jo, ) is contained in the orthogonal Lic algebra re-
lated to #: so(Jp,1). Now, extending d to J by means of d1 = 0, we get immediately
that d € Der J. Conversely, any derivation of J restricts to a derivation of (Jy, 9, -
8o that ,

Der(Jo, ) = {d|s, : d € Der J} = Der J .

It is known that Jp is an irreducible Der J-module, therefore J; is an irreducible
Der(Jo, -)-module, which implies that (Jo, ) is simple and their derivations are inner
([13, Theorem 3.4] and [14, Lemma, 1)), that is, Der(Jg, ) C Lie(Jp, ).

We denote by R, the multiplication operator in (Jg, ) given by B (y) =z - y.
Since trace(Rz) is a multiple of ¢(z), we have trace(R;) = trace(R;) =0 if 2 € Jy,
hence Lie(Jo, ) C si(Jp).

In order to prove the converse, we note that (*) is equivalent to:

R 1
[R‘w? Ry] = [Rar! Ry] - H (t(ﬁl "")y - t(yl “)"‘n)
for any ¢,y € Jo. Hence

~ (b(z, -y — £, ~)e) =
= [, Ry] ~ [Rq, Ry] € Lie(Jy, ) + Der(Jo, -) C Lie(Jo, )

since [y, Ry] is always a derivation of J. But the linear maps on the left hand side
above span the orthogonal Lie algebra so(Jg, 1), so that so(Jy,t) C Lie(Jy, ). Now
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we consider the symmetric elements relative to the trace: H = {¢ € Endr(Jg) |
trace(p) = 0, t(pz,y) = t(z,py) Va,y & Jo}. Then sl(Jo) = H ® so(Jo,t), and H
is an irreducible module for so{Jy,t). As the operator R, is symmetric with respect

to the trace form since
oy, 2) =t({ay)z) — i—t(my)t(z) = t((ry)z) = t{y(=2)) = t(y, 2 - 2),

it follows that H N Lie(Jy, ) # 0 and, by irreducibility, that H C Lie(Jy, -) and we
conclude that Lie(Jy, ) = sl(Jo). N

We now proceed to the computations in this case. It is clear that T* = 0. As

regards curvature, we see at once that

Rz, y) = n[Ry, Ry] — p[Ra, Ry
2

= (1 ~ )[R, By} + (1, =Yy = t(y, =)o),

As for the holonomy algebra, we notice that

R (a,) = (77 = 1), Ryl + "1z, ~)y — £y, ~)2) € Der ] + s0(, 1),

which is contained in Lie(Jy, } and shows that Hol®(Jy) C Lie(Jo,-), because
Lie(Jy, ) is obviously closed under commutation by a{z,—) = nR,. Besides,
Hol®(Jy) is closed under commutation by R, and these elements generate the Lie
algebra Lie(Jg, -}, which yields that Hol*(Jy) is an ideal of Lie(Jy, -} = s{(Jp); but
this is a simple algebra, consequently Hol®(Js) is 0 or s/(Jy). As the degree of J is
greater than 2, there exists & € Jg such that # and -z = y are linearly independent,
and for them we have [R,, Ry] = 0 (Jorden identity) and so BR*{z,y) # 0, therefore
Hol*(Jo) = si(Jo). Summarizing, we have obtained

Ra(may) = (7?2 - M)[R:r«‘: Ry} + %Q(t(wa "")y - t(yl -"-){L')

{ T(z,y) =0
Hol*(T") = si(Jo)

IV) Adjoint-Jordan type: there exisis a simple associative algebra of degree
n > 3 with an involution of second kind (A4, j) and center K = F[g} {quadratic.
extension of F' or isomorphic to F X F) where ¢ € F*, and u,n,v € F* such that
T=H(Ao={2€ A|j(x) =z, t(x) = 0} ( t the generic trace of H(A,j)) and

for any z,y € T
{ [ar,y, _'] = #ad[ﬁly”T
alz,y) =nz y+vylzy

where z -y = 1(xy + yz) - Li(xy)1 with zy the product in A, and [z,y) = 2y — yz
the bracket in A.
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In this case first we will find out the derivation algebra and the Lie multiplica-
tion algebra, as in the Jordan case. As adz is a derivation for both the Lie bracket
and the Jordan product in A, it is clear that ad gz € Der(T, o) for all # € T'. The

converse is true, because

Der(T, @) € Der((T,a)) = Der(H(A, J)o, ) = Der H(A, j)
by the Lemma, where (T, a)* denotes the algebra defined on T' with multiplication
given by a(z,y) + o(y, ), and it is known {9, Theorem VI.9] that Der H{A, j) =

ad S(A, 5)ulm(a i)y, Where S(A,§) ={z € A| j{g) = —=} = ¢H (A, j) and S(A, j)o
its subset of trace zero elements . Therefore

Der(T, 0.’) = ad S(A, j)(}lﬂ'(A'j)O ~ S(A,J)o
since S{A, j)o 1s a simple Lie algebra. Hence T = H(A, J)o = ¢5S(A4, j)o is an irre-
~ ducible ad S(A, j)o = Der T-module, consequently (7, @) is again a simple algebra
and its derivations are inner. As for the Lie multiplication algebra, a(z,—) and
a(—, ) are linear combinations of R, (with zero trace, by the Lemma) and ad ¢z, -
whence Lie(T, @) C s{(T). But Lie(T, ) D Lie((T,a)t) = Lie(H (A, )0, ) and we
saw in the Lemma above that Lie(# (A, j)o, ) = sl(H (A, J)g), therefore

Lie(T, a) = si(T).

We now turn to the computations of the tensors, We obtain that T%(x,y) = .
2vg[z, y], while

Ra(m’ y) = [a(w! _)) a(y: _)] - [m: Y, —]
= [pR, + vgad 2, R, + vgady] — pad[z,y]
= 1’ [R,, Ry} + nvq([R;, ady] + [ad @, R)]) + (v2¢” — p) ad[=, 3.

If we denote by I, and », the right and left multiplications in the associative algebra
A, it is easily checked using (*} that

L (2, -}y ~ t(y, ~)a)

n

R 1
[R:ﬂ:Ry] = E[lw + rmly + "y] +

= %ad[m, y] -+ ?—i-(t(w, =)y ~t{y, —)z)

and, since ad g& € Der(H (A, j)o, ) then [ad gz, Ry] = Biou

Combining these equalities we get

2 2
R%(z,y) = (1-74- o+ y2g? - “) ad[z, y] + 2w Ry, )+ %(t(&, ~)y —t{y, —)x).
We note that
Rz, y) =
= [a(z,—),a(y, —)] — pad(z, y] € Lie(T, a) + Der(T, &) ¢ Lie(T, o)
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and a(z,—) € Lie(T, a), so Hol*(T"} C Lie(T,a). Besides Hol*(T) is closed un-
der commutation by a{x, —), but these operators generate Lie(T) e}, which forces
Hol® (T} to be an ideal of Lie(T', &), As we saw that Lie(Z', o} = sl(T), it is a simple
algebra and as in the Jordan type we may conclude that

T*(z,y) = 2vgfz, v
2
Rz, y) = (94— + vl — ,u) adfe, y] + 2 Ry, o

+L (42, )y ~ ty, —)v)
Hol*(T"} = sl(T).

‘ Notice that in case K = F[q] = F @ F, then A = B ® B°?, with B a central
simple associative algebra, and j is the exchange involution. Thus H(A, j) may be
identified with Bt and S(A, j) with the Lie algebra B~ by means of the projection

~ onto the first component. The formulae above remain valid for 7' = By in this case,
with ¢ = 1 and with ¢ the generic trace of B.
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