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Octonions and affine connections on spheres

ALBERTO ELDUQUE" Departamento de Matematicas, Facultad de Ciencias, Uni-
versidad de Zaragoza, 50009 Zaragoza, Spain,

HYO CHUL MYUNG! Korea Institute for Advanced Study and KAIST, School of
Mathematics, 207-43 Cheongryangri-dong Dongdaemun-gu, Seoul 130-012, Korea.

ABsTRACT: The interplay of the theory of octonicns with affine connections on the spheres S%,
S7 and §'% will be presented. Specifically, when these spheres are realized as the reductive
homogeneous spaces 5% = Gy /8U(3), 87 = Spin(7)/G; and §'° = Spin{9}/ Spin(7), the structure
 of octonjons can be effectively used to determine all left invariant afine connections on them.

These connections on 5% and §7 are respectively obtained fram a two parameters family of the
compact vector color algebra and a one parameter family of the compact simple non-Lie Malcev
algebra. If = R @ Oy is the algebra of actonions {or Cayley algebra), then all Spin(9)-invariant
affine connections on §5 are given by a three parameters family of Zq-graded products on Og X @,
with even part Qg and odd part Q.

1. INTRODUCTION,

Let G be a Lie group acting smoothly and transitively on a manifold M. Given
any p € M and the isotropy subgroup at p: H = {g € G : g-p = p}, the
homogeneous space M ~ G/H is said to be reductive in case there is a subspace m
of the Lie algebra g of ¢ such that

g=hodm (L

(where b is the Lie subalgebra of g which corresponds to the closed subgroup H)
and (Ad H)(m) C m; so that [, m] C m, and the converse is true if H is connected.

* Suppotted by the Spanish DGICYT (Pb 94-1311-C03-03) and by the Universidad de La Ricja
(API-98/B15),
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44 Elduque and Myung

Then the pairs (G, H) and (g, h) are called reductive pairs. Notice that for
compact H, such a complement m always exist (just take any complement of § as
a vector subspace of g and “average” the corresponding projection operator).

An affine connection ¥V on a homogeneous space M ~ G/H is said to be
invariant in case the left translation by any element of 7 is an affine transformation
of V.

Nomizu ([1, Theorem 8.1]) proved in 1954 the following fundamental theorem

for affine connections:

THEOREM 1. Let M ~ G/H be a reductive homogeneous space with decomposi-
tion (1). Then the set of G-invariant affine connections on M Is in bijection with

the set of bilinear maps
aimxm—m

with (Ad h)(a(z, 1) = a((AdR)(z), (Adh)(y)) for any h € H and any 2,y € m.

In other words, each invariant affine connection on M is determined by a bi-
linear product on m which admits Ad H|, as a subgroup of its group of automor-
phisms. This implies that ad |, is contained in the Lie algebra of derivations, and
the converse is valid if & is connected.

Looking at m as a module for the group H or the Lie algebra b via the adjoint
actions, Nomizu’s Theorem asserts that the set of invariant afline connections on M
is in bijection with the vector space Homg (m ®g m, m), or with Homp(m &g m, m}
if H is connected,

Nomizu proved this Theorem by identifying the tangent space T,M of M at
p with m and by defining for each vector field X € m € ¢ a vector field X on a
neighborhood of p in M, and then considered for each invariant affine connection

V on M the product given by
(X, v) = (Vz¥) .
P

Dealing in a more global way (see [2, Chapter IV]), one can consider for each left-
invariant vector field X € g the global vector field X1 defined on M by X} =
ﬁ—t(exp tX) - m. Now, for any invariant affine connection ¥V on M we may identify
m with the tangent space T, M by means of X — X} and associate with V the
product defined by

o(X,Y) = (Ve Y7 = [X*,Y7]) (2)

b
This too gives a bijection as in Theorem 1.

The two basic tensors associated to any connection V, torsion and curvature,
are then determined by their values at p (by invariance) and after the identification
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above of T, M with m, they are given by the formulae:

TX,)Y)=a(X,Y}-aY,X) = [X,Y]n
R(X,Y)Z = a(X,a(Y, Z)) - (Y, o(X, Z)) (3)
= o([X, Y]m, 2) - [[X, Y]y, Z]

where for any X,Y € m, [X,Y], and [X,Y], denote the projections of the Lie
bracket [X, Y] onto m and b, respectively, in the decomposition (1) and « is given
by (2).

Two important invariant connections appear immediately associated to any re-
ductive homogeneous space, the canonical connection, which corresponds to a(X,Y)
= 0 VX,Y € m, and the natural connection, which corresponds to o(X,Y) =
%[X,Y]m ¥X,Y € m. The natural connection is symmetric, that is, it has zero

torsion.

According to Borel ([3, Theorem III) and [4, Théoréme 3]} the only spheres
that appear as homogeneous spaces in nonclassical ways arc

S% = Ga/SU(3), S =Spin(7)/G, and &' = Spin(9)/ spin(?) Y

The three of them are intimately related to the algebra of octonions, and this
algebra can be used to determine (through Nomizu’s Theorem) the invariant affine
connections on them. This has been done in [5,6,7,8,9] and the aim of this work is
to give a unified survey of these results.

Although much of the algebraic results on the algebras related to the octonions
that will appear in what follows can be given in much more generality {for Cayley-
Dickson algebras over arbitrary fields), we shall stick for simplicity to the real case.
Thus the term algebra will always refer to a finite-dimensional algebra over R.

We finish this introduction with a technical useful result, In all three homo-
geneous spaces in (4), m in the decomposition (1) is unique by the following result
{see {5, Proposition 2.3] or {7, Proposition 4):

LEmMMA 2. Let b be a simple subalgebra of a Lie algebra g with dimg < 2dim .
- Then there is a unique subspace m of g satisfying g = h&m and [h, m] C m; namely,
the orthogonal complement of b relative to the Killing form of g.

Proof: By Cartan’s criterion, g = h @ m for the orthogonal complement m to h
relative to the Killing form. Let & be the projection of g onto § relative to this
decomposition. In case g = h @ n and [h,n] C n for some subspace n, m(n) is an
h-submodule of h, which by simplicity and dimension count has to be trivial. Hence
n C m and n = msince they both have the same dimension.
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2. INVARIANT CONNECTIONS ON 5° = G,/SU(3).

The first sphere to be considered is the six dimensional sphere S, realized as a
quotient of the compact group of type G, which is the group of automorphisms of
the algebra of octonions, by its subgroup SU(3). To put this explicitly, some facts
concerning the octonions will be recalled first.

The algebra of octonions can be defined ag () = C® C? with the multiplication
defined by

(@ +u)(B+v) = (aﬁ—a(u,v)) + (av+,@u+u*v) (5)
for any a,# € C and u, v € C®, where o : € x €8 —5 (2 is the usual hermitian form

given by o((1, 29, z3), (41, vz, Y3)) = 1§1 + Zais + a7s, and the real product * on
C® is defined by means of ‘

o(u, v * w) = det{u, v, w)

for any u,v,w € C°. The real algebra (C%, ) is related to the so-called “color
algebra” introduced in [10] (see [11]). _

Givenany 2 = a+u €0, let # = & — u. Then t(e) = 2+ Z and n(x) = ¢& are
real numbers and « satisfies the quadratic equation

z? — t()z +n(e)1 =0, (6)

Identifying O with R# #(z) turns out to be the euclidean norm in R3 hence Oy =
{z €0 :t{2) =0} = Ri® C® can be identified with the euclidean space R” and the
six dimensional sphere S° lives inside Oy as S = {xeQ:n(z)=1}.

‘The group of automorphisms Aut© is the compact Lie group of type Ga.
Because of (6) it preserves the standard involution 2 #, the trace ¢ and the norm
7, so that it preserves Qg and S% C @, Moreover, the action on S¢ is transitive
(see [6, Theorem 6.5] or [12, exercise 6.9]).

Take the element p = i € 5%, Any automorphism fixing ¢ fixes C elementwise,
80 that it preserves €%, which is the orthogonal complement of C relative to n. By
(5), it is an automorphism of the algebra (C8, %), it is C-linear on € and belongs to
the unitary group. The definition of the product  forces its determinant (over C)
" to be 1. Hence it belongs to SU (3), and conversely. Thus, the isotropy subgroup of
the induced action Gy x % — S8 at ¢ is SU(3) and 6 ~ Ga/8U(3).

The Lie algebra of Gy = Aut Q is gy = Der @, and the Lie algebra of the closed
subgroup SU(3) is su(3) = {d € Der @ : d(C) = 0}. By Lemma 2, there is a unique
complement of su(3) invariant under the adjoint action of su(3).

Now, by [13, II1.8] we know that Der @ is the linear span of the maps

Dﬂ«”ay = [Lw'v Ly] + [L-m Ry] + [Rm Ry] = L[m,y] - R[r,y] - 3[st Ry] )
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where L, and R, denote the left and right multiplications by #. For 2,y € Oy, the
restriction Dy y)o, is twice the map d(x,y) considered in [5, (2.11)] and [6] (see [8,
Lemma 6]).

For any u € C* D o(d) = i(ud) — wi® 4 i(tu) — i*u + (in)é — iu = 4u. From

this it follows that

g2 = su(3) B D; cs
and for any D € su(3) and u € C*, [D, D; ] = Dpiyu+ Dipiwy = Dipruy € Dy 2,
so that m = D; co = su(3)L.

In C* consider the new product given by u o v = #(u * v}. Actually, the map
(€%, 0) = (€3, ), u +» fu is an isomorphism of algebras. Now the identification of
m with the tangent space of S° at 4, which is the orthogonal complement of Ri in
Oy, that is €3, is given by

d ' . :
X =Dy rr X,;" = E{h:o(eXP LDy (1) = Dy (i) = du.
"This is not just a vector space isomorphism (see [5, Proposition 4.2]):
ProrosiTioN 3. The linear map (m, [, Jm) — (€3, 0), given by D,-,;J > 4w, is an
isomorphism of algebras and of su(3)-modules.

‘Therefore, using that SU(3} is connected and this Proposition we get
_ I‘IOIT[SU(g)(m ®r m,m) & Hom‘,u(g)(ﬂ:s RRr ‘1{:6, Ca)

and this is a real vector space of dimension 2, something that is checked by extending
scalars up to C ([5, Section 5]). Since for any ¢t € C, the map C* xC® - €7, (u,v) >
#(u o v) is su(3)-invariant, it follows that Hom,,s)(C® ®@x C°,(®) is spanned over
C by the product o. That is, it is spanned over R by the products {u,v) — uov
and (wu,v) = i(u o v). It should be noticed here that the multiplication by i on
C® ~ T} 8% corresponds to the classical invariant almost complex structure on S8,

We have arrived at:

THEOREM 4. There is a two parameters family of Ga-invariant affine connections
8

on S°.

Through the isomorphism in Proposition 3, the formulae (3) for the torsion and
curvature of the connection determined by the product (u,v) v p(uov) (p € C)
are given by ([6, Theorem 9]):

T(u,v) = (2u — (uov),
R(u,v)w = (jp]z— %) (vo(vow)—vo (uocw))

- (,u - %) (0 %) 0w+ (v, w)u — n(u, w)y
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where n(u,v) = g{n(u +v) — n(u) - n(v)) (the real part of a(u, v)).

The only symmetric Gy-invariant affine connection ts the natural one (4 = %),
and for it the curvature has a very simple expression: R(w, v)w = n(v, w)yu—n(y, wv
([6, Corollary 10]). This natural connection is the usual Riemannian connection on

S8,

3. INVARIANT CONNECTIONS ON $7 = Spin(7)/Ga.

There is a triple product defined on the octonions with some nice properties,
which is given by
{m: Y Z} = (mg)z (7)

for any z,y,2 € O (see [14] for the main features of this product). The group of
~ automorphisms of this triple product turns out to be isomorphic to the compagct
group By = Spin(7) under jts spin representation. The action of this automorphism
group is transitive on the seven dimensional sphere 5" = {x € O : n(x) = 1}. There
is a distinguished element in 57, the unit element 1 € @, and the isotropy subgroup
at 1 is the subgroup of those automorphistns of the triple product that fix 1. From
(7) with y = 1 it follows that this isotropy subgroup is exactly Gy = Aut ©.

The Lie algebra bs of Bs is the Lie algebra of derivations of thie triple product in
(7}, and the Lie subalgebra associated to the isotropy subgroup at 1 is the subalgebra
of the derivations of O (these are the derivations of the triple product that annihilate
1).

LFrom the alternative laws we have for any u,a,y € O

Lu(ey) = (Ly + Ru)(@)y — 2Ly (v),

fiu(2y) = ~Ru(e)y + 2 (L + Ry (v). @

Hence
(Lo + 2Ry )(wy) = a,du(m)y +z{Ly + 2R4)(y),

9
ady (2y) = (Ly + 2R, ) (2)y — 2(20, + Ru){y) ©

where ady (z) = [u, &) = uzx — zu. For any v € O, let By, = L, + 2R,,. Also notice
that (2Ly + Ry ) (&) = — By (z) for any v € Qo and any = € O, since @ = —u. Hence,
*(9) implies that

Eu({z,y,2} = By ((2§)2) = adu(zd)z + () Ex(2)
= (Eu(®)g) 2 — (2(2Lu + R)(@) + (25) Bu(2)
= {Bul@), v, 2} + {2, Buly), 2} + {2, y, Eu(2))
for any u € Qg and any z,y,z € O, Thus, E, € bs for any u € Q. Moreover, since

{z, 2,¥} = n{z)y for any z,y € O, it follows that bs C oD, n), the orthogonal Lie
algebra relative to the euclidean norm n; hence for any D € by, D(1) = v € Q and
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D = (D 1B.) + By, with (D — $£E,)(1) = 0, so that D — 1 E, € Der© = g,.
Therefore
bs = g2 @ Eg,

and for any D € gz and u € Qy, [D, By] = [D, Ly+2Ry] = Lpu)+28Bpp) = Epu),
80 that m = Eg, is the orthogonal complement to gy relative to the Killing form of
b, because of Lemma 2,

Now, the identification of m = Eg, with the tangent space to ST at 1: Ty S7 =
@y, is given by

d
X=E,» X = ah;g(exptEﬂ)(l) = F.(1) = 3u.

For any u,v € Oy, [7, Lemma 2] shows that

[Eu:Ev] — [Lu + 2Ru; Lv + 2Ru]
= 2Dy w — (Lpuyw] + 2Bpu,0]) = 2Du0 — Epuu]

This immediately gives the following:

PRoPOSITION 5. The linear map (m,[, Jn) — (O, —%[, 1), given by Ey — 3u, is
an Isomorphism of algebras and of ga-modules,

Notice that the algebra (Qg, — L[, ]) is isomorphic to (Qg, [, ]), which is a central
simple non-Lie Malcev algebra. For any a,y € Op, let us write z oy = w%[m,y].

Using Proposition 5 and [7, Theorem 8] we get
Homg, (m ®g m, m) & Homyg, (0 @r O, Oo)

and this last real vector space is spanned by the map given by 2 @ y — [2, y] {or by
r@yr— zoy). Then:

THEOREM 6. There is a one parameter family of Spin{7)-invariant affine connec-

tions on S7.

Through the isomorphism in Proposition b, the formulas for the torsion and
curvature of the connection determined by the product given by (u,v) — p{uo v)
 (p € R) are given, with the same computations as in [8, Theorem 7] but taking into
account that [u, v} = 2(u x v) Yu,v € Oy, by

T(u,v) = (2p — Nuow,

Rlw,vjw = (1~ = 2%} 0v) 0 0 5 (" — 1) (ot w)o = (o, w)u)

As for S9, the only symmetric Spin(7)-invariant affine connection is the natural one
(u= -é—) and for it the curvature tensor has the same very simple expression, since

this is again the usual Riemannian connection on S7.
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4. INVARIANT CONNECTIONS ON §% = Spin(9)/ Spin(7).

Let us consider now the nine dimensional euclidean space R? == IR x (3. Identify
@ with the subspace 0 x (@ and let e = (1,0). Then R? is the orthogonal direct sum
of Re and ©. The linear map

p:RxQ— Endg(0 x @),

ae+ o o La
L;ﬁ —

where o € R and z € O (that is p(ae + x)(u, v) = (@u + 2v, Fu — av)), induces an
isomorphism, also denoted by p, of the even Clifford algebra of R® onto Endg(0x0).
The corresponding spin group Spin(9) will be identified in what follows with its
image under p. It is not difficult to see that Spin(9) acts transitively on the sphere
- S = {(2,y) € 0O x O : n(z) + n(y) = 1} (see [9] or [12, Theorem 14.79), although
the way it is done in this last reference is slightly different),
By the well known triality principle (see [12, 14.19]) this allows to identify
Spin(8) with the subgroup of Spin(9) consisting of the elements

0
("’1 ) € Endg (0 x O)
0
where @1, pg are orthogonal transformations of @ and there is a third orthogonal
transformation g of @ satisfying @1 (zy) = wo(2)e2(y) for any z,y € Q.
Given an automorphism ¢ of the triple product in (7), we have for any z, y € O:

plow) = p({z,1,5) = {p(e), #(1), ¢(1) = $()oly),

where @(z) = @(z)e(1). Then p(1) = G(1)¢(1), so that $(1) = 1. Moreover, all
this implies for any ,y, z € O that

()P (2) = o({e, 3, 2}) = p((zB)e) = Bladelz),

so that @{zy) = p(z)e(y) for any 2,y € O. Let @ be defined by $(z) = (#). Then
@(zy) = p(z)p(y) for any @,y € O and the group Spin(7), which is the group of
automorphisms of the triple product, embeds in Spin(8) through

& 0
o (0 95) |
Let f be the isotropy subgroup of the action of Spin(9) on S at the point
{1,0) € O x ©@. Then the arguments above show that, since #(1) = 1, H contains

a subgroup K isomorphic to Spin(7). Thus Spin(9)/K — S'*: gK 3 ¢ (1,0} is a
covering map, and since 5% is simply connected it follows by dimension count that
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this is a bijection, so that A = K & Spin(7) (see [12, Theorem 14.79], or [9] for a
proof in a wider context). '
The Lie algebra by of Spin(9) is graded over Zjs in a natural way:

by =goD g,

where gg is the Lie algebra of Spin(8), spanned by the elements

p(@)oly) — p(y)p(z) = (L""Lg o byle Ll E LoLe ) € Endg(O x O)

for ,y € 0, and where g; is spanned by the elements

Py = ple)p(x) = (—OLx f;]m)

for z € Q.
Notice that

span (L, Lg — LyLg i #,y € Q) = span (LgLy — LgL, : 2,y € O)

is the orthogonal Lie algebra o(Q,n). Now, by local triality ([13, Theorem 3.31]),
for any d € o(Q), n), there are d',d" € o{Q, n) such that for any 2,y € O

d(zy) = d'(z)y + 2d"(y) . (10)

Using (8) it can be checked that (L,Lg — LyLz)" = LgLy — LgL,, thus

w={i= (! 8) dcoom).

G &) (L 5]

is dL; — Lyd", which by (10) is exactly Lg (). Hence

The (1,2)-entry of

[Md,Pw} = Pd’(a:) ‘ (11)

* for any d € o(@,n) and x € 0.
"The Lie subalgebra of the isotropy subgroup of the action of Spin(9) on S1% at
the point (1,0) is

h={My:d e o(0,n}and d(1) =0} = {Mg:d & o(Cg,n)}.
iFrom [13, (3.79)] we have

o(0,n) = DerO ® Lg, & Ry, = Der O & adg, €70, (12)
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where T = 3(Ly + Ry) for any = ¢ Q. Since for any ¢ € DerO @ adg,, d{1) = 0,
it follows from (12) that

o(Q@g,n) = DerQ & adg, .

Now from the flexible law we get lad,, Ty] = Tadz(y) = Thoy) for any 2,y € O, so
that
[@, To] = Typw) (13)

for any d € (@, n) and = € Oy, and hence Tty is a subspace of o(Q, n) invariant
under the adjoint action of o(Qyg, n) = DerQ @ adg,. If we write

Ny = (2(;‘” TO;’) - (1(;“? %E{x) (because of (8),)

we arrive at the decomposition
by = bGBN@Qﬂ;’P@-

Besides, the subspace m = No, @ Pp is h-invariant, because of {11) and since
(M4, Np] = Ny(sy by (13) for any d & 0(Qq, n) and any = € Oy, From Lemma 2
we conclude that m = No, ® Pg is the orthogonal complement of § relative to the
Killing form of b,,

The identification of m = No, @ Fg with the tangent space to S15 at (1,0,
0,05 =0y x O is given by

T, L 1 ¥
B + _ _ &z Yy =
X—Nx"l‘Py HX(1,0)“(N3+Py)(1’U)_ (—Lg %Rw) (0) - (—-ﬂ) .

As for the multiplication among the different elements involved, notice that
1
[Ne, Pyl = Py = EP“"@" because of (11} and (8),

[Ne, Nz, €0 since [Ty, Te,)(1) = 0,
[Py Pyolm = —Ny gz—ya5; (see [91),

- for any 2,21, 25 € Qg and y, ¥1,y2 € 0. From this we get immediately:

PROPOSITION 7. The linear map
(M, Jm) = (Oo x O, 0):
Nx'i‘Py’_)‘ (m,—g}),

where 1
(®1,3) © (2, ¥2) = (Fary — Y2, §(y1éﬁ‘2 — yaxy)
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for any x1, %9 € O, 11, y2 € O, is an isomorphism of algebras and of i) = o(Qy, n)-
modules, where (g is given the natural structure of o(Qq, n)-module, while O is the
irreducible o(Qg, n)-module given by the spin representation: d - @ = d"(z} for any
d € o(Uyg,n) and z € 0.

Using Proposition 7 one gets
Homg (m ®@g m, m) = Homy, ((Qy x O) @r (Tg x 0), 0 x O) ,

and this last space is determined in [9]. It has dimension 3 and it is spanned by the

products:
(21, 91) o0 (22, y2) = (Fatn — D142, 0),

(mljyl) o1 (1'2’:92) = (0,y1m2),
(z1,31) o2 (22, 2) = (0,121} .

THEOREM 8. There is a three parameters family of Spin(%)-invariant affine con-
nections on 59,

Through the isomorphism given in Proposition 7 it is straightforward, although
tedious, to compute the torsion and curvature tensors, as we did for S® and 57, of
the invariant affine connection determined by the product

(21, 92) * (z2, y2)
= yo (21, 1) o0 (@2, ¥2) + 7121, 1) 01 (T2, 2) — va(w1,31) 02 (2, 92)  (14)
= (Yo(Fatn — 1y2), my1 22 — Yayee1) .

We will do it only for the torsion tensor:

T((fﬂl,yl),(:ﬂg,yg))
= (mlpyl) *($21y2) - (w21y2)*(a:1,y1) - (mlvyl) ¢ (3213/2)

= ((2‘70 - D) (Fotn — Hrv2), (11 + 72 — %)(yzth - yzm)) :

Hence there is a whole one parameter family of symmetric invariant affine connec-
tions: those determined by v = % =4 + 2. The natural connection corresponds
toyo =41 ="72= 5

The usual Riemannian metric on $*® (which is invariant under the whole or-
thogonal group O(16), so in particular it is Spin(9)-invariant) is given in Ti1,08"% =
Qg x @ by {(z1,31), (22, ¥2)) = n{®1,z3) + n{y1, ¥2) (the usual scalar product on
R1% = Qg x O). According to [1, (13.1)] (where a minus sign is missing!) the cor-
responding Riemannian connection is determined by the product (through Propo-
sition 7}
(w1, 31) 0 (22, 32) + U ({21, 11), (@3, 12))

[O-2
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where U is determined by

AU ((21,91), (22, 92)) , (23, ¥s))
= ((#1,91), (23, ¥3) © (22, 12)) + (%2, 42), (®3, y3) © (21, 11)) -

Using that n(ab, ¢) = n{b, &) = n(a, cb) and that n(a,b) = n{a,d) for any a, b, ¢ € O,
it is easy to check that

U((zy, 11), (22,10)) = (0, g(ylwz +yzw1))

whence the usual Riemannian connection on S'° corresponds to the product (14)
with v = §, 11 = 1 and 2 = } (see [9] for details).
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