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ABSTRACT In this paper a theoretical study is made on the
scattering of surface plasmon polaritons by a finite periodic ar-
ray of one-dimensional rectangular grooves. Our approach is
based on a multimodal expansion technique. We have found
that the geometrical parameters of the array can be properly
tuned to achieve optimal performance of the structure either as
a Bragg reflector or as a converter of surface plasmon polaritons
into light. Most importantly, such functionalities can be fully
achieved with a relatively small number of grooves.

PACS 73.20.Mf; 78.67.-n; 41.20.Jb

1 Introduction

According to our everyday experience, light is
usually reflected by metals. However, the interaction be-
tween light and mobile surface charges may also lead to the
emergence of electromagnetic (EM) excitations localized on
metal–dielectric interfaces. These so-called surface plasmon
polaritons (SPPs) are well known for concentrating EM fields
in sub-wavelength volumes and guiding them through the sur-
face of a metal [1]. Such capabilities have become critical due
to their potential use in the implementation of sub-wavelength
photonic circuits [2, 3].

Consequently, a great deal of attention has been recently
devoted to the creation of optical elements for SPPs [4–9],
as well as to the efficient coupling of freely-propagating light
into and out of them. This requires a precise knowledge of the
scattering coefficients of the dispersion centers (i.e. deviations
from a flat metal–dielectric interface) placed in the path of
surface plasmon polaritons. Although many theoretical works
have studied the scattering of SPPs by rough surfaces, scatter-
ing from simple geometries is not so well known.

From the theoretical side, the calculation of EM fields on
a metal surface in the optical regime is a well-defined but dif-
ficult problem. Although the macroscopic Maxwell equations
very accurately govern the interaction of the EM fields with
the solid, their solution is difficult due to the different ranges
of length scales involved (system size, wavelength, skin depth
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etc.). Several techniques have been applied to solve this prob-
lem, each of them with their advantages and drawbacks. Brute
force attacks by means of Green dyadic technique [10–14] or
the discrete dipole approximation [15–17], may provide vir-
tually exact results, but both methods suffer from a large (quite
often prohibitive) numerical cost associated with the inversion
of huge matrices and the calculation of cumbersome integrals.
Rayleigh expansion has also been extensively applied in the
context of SPP scattering by either rough surfaces [18, 19] or
simple objects [20–22]. However, the calculation of the scat-
tering coefficients within this approximation requires dealing
with a difficult integral equation [23, 24] from which physical
insight is not easily inferred.

In a previous work [25], we analyzed the scattering of
SPPs impinging at normal incidence on a finite array com-
posed of rectangular grooves by means of a modal expansion
technique. In the present paper, we provide further details on
such calculations and extend our study to the case in which
multiple modes inside each groove are considered. A de-
tailed discussion on the role of the groove depth will be also
presented.

2 Scattering of SPPs by surface inhomogeneities

Consider a monochromatic SPP along a metal–air
interface impinging at normal incidence onto an inhomogene-
ity region. Let us assume that such inhomogeneities are due
to variations in the surface profile. Suppose that the metal has
a wavelength-dependent dielectric function ε(λ) and that the
surface relief profile has a given functional form. Our recipe
for the solution is then quite straightforward: we only have to
expand the non-zero EM field components in terms of the in-
cident SPP plus scattered field, apply boundary conditions all
over the surface and solve the continuity equations in order to
obtain the EM fields at any desired point.

Of course, this is a non-trivial issue for which some sim-
plifications are mandatory. The first one is related to the
boundary conditions: instead of the strict Maxwell boundary
conditions, we make use of the so-called surface impedance
boundary conditions (SIBC) [26], which assume that the skin
depth is much smaller than any other length scale within the
problem. Consequently, SIBC are only applicable when the
dielectric function of the metal satisfies |ε(λ)| � 1. Hence, the
continuity equation at the metallic surface is reduced to a sim-
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ple expression involving the tangential components of the EM
fields :

Ft(r) ≡ Et(r)− Zs Ht(r)×n(r) = 0 , (1)

where Zs = ε(λ)−1/2 and n(r) is the unitary vector normal to
the surface directed into the metal half-space. As Zs → 0, the
auxiliary field F transforms into E and (1) accounts for the
boundary condition of a perfect conductor.

The second simplification relies on the way we imple-
ment the field expansion inside the grooves, which extends
to real metals the mode matching or momentum technique
previously developed within the perfect conductor approxi-
mation (PCA) [27, 28]. Within this framework, the EM fields
inside the indentations are expanded in terms of an eigen-
function series, each term of which obeys the appropriate
wave equations in both air and metal regions. The problem
of finding such a basis is easily solved if PCA is assumed
for the vertical walls, which is valid for indentations much
wider than the skin depth. As far as fairly good results can
be obtained [29] without overly complicating the theoretical
treatment, we project EM fields onto PCA eigenfunctions, al-
though further refinements have been proposed [30, 31]. Sur-
face impedance boundary conditions are otherwise assumed
for the horizontal surfaces.

Such formalism enables us to describe the scattering prop-
erties of an arbitrary set of rectangular indentations without
any restriction over their position or aspect ratio, providing
a very compact representation of the EM fields and simple
expressions for the scattering magnitudes. By using this tech-
nique, we have already studied the SPP scattering for sin-
gle [29] and periodic [25] defects. Here, we revisit that latter
case by incorporating a multimodal implementation of the
method.

2.1 A tight-binding-like system of equations

According to the technique mentioned above, the
method of launching SPPs onto a set of indentations closely
resembles the back-side illumination employed in some ex-
perimental works [32–35]. We consider a single slit flanked
by a set of N indentations placed in the output surface of an
infinite metallic film of thickness h (see Fig. 1). Eventually,
the distance between the slit and indentations will be taken
to be infinity so that the slit merely plays the role of a virtual
SPP-launcher.

In the present work, we consider the simplest case of
1D subwavelength indentations (grooves). Additionally, we
impose that the external illumination be uniform along the
y-axis, so we restrict ourselves to the scattering of SPs im-
pinging onto the grooves at normal incidence. In this way, the
tangential components of the F field at the openings of a given
indentation of width ai located at position xi can be written in
terms of its modal amplitudes {Eα, E ′

α} as{
Ft(r)|z=0 = ∑

α EαΦ
α(x) ,

Ft(r)|z=h = ∑
α E ′

αΦ
α(x) ,

(2)

where

Φα
x = Axα cos

απ

ai

(
x + ai

2
− xi

)
; Φα

y = 0 , (3)

FIGURE 1 Schematic picture of the system under study: single slit flanked
in the output surface by an arbitrary set of N indentations located at a long
distance from its right side. A p-polarized EM wave is impinging from the
bottom. Parameters {xα, aα,wα} define the geometry of indentations

with Ax0 = √
1/ai and Axα = √

2/ai for α = 1 ,2, ... By match-
ing appropriately at the two interfaces, we obtain the full EM
field in all spatial points as a function of the projection onto
these waveguide eigenmodes at z = 0 and z = h. The main
end product of such expanding and matching is a set of alge-
braic equations for the modal amplitudes of the F field which
closely resembles the usual tight-binding formalism in solid-
state physics but includes interaction up to all neighbors. For
the sake of simplicity, let us assume that the illuminating slit
falls within the width range in which the PCA description of
vertical walls still holds [36] but only the lowest mode is rel-
evant. With nm being the number of considered modes inside
each groove, we then have to solve a linear system of Nnm +
2 equations for the modal amplitudes at the input and output
openings of the slit (E0, E ′

0) and the output openings of the N
grooves ({E ′

α}):{
(G00 − ε0)E0 − Gv0 E ′

0 = I0 ,

(Gαα − εα)E ′
α +∑

β �=α Gαβ E ′
β − Gv0E0δα0 = 0 .

(4)

This set of equations is basically the same as the one obtained
within the PCA [27] for the modal amplitudes of the elec-
tric field. Therefore its physical meaning remains unchanged,
although the expressions are slightly different due to the non-
zero impedance Zs at the metal surface: I0 represents the
back-side illumination on the slit (which must be p-polarized
in order to excite SPPs); the “self-energy” εα is related to the
bouncing back and forth of the EM fields inside indentation α.
For the slit,

ε0 = −i
eik0h(1 + Zs)+ e−ik0h(1 − Zs)

eik0h(1 + Zs)2 − e−ik0h(1 − Zs)2
, (5)

whereas for a groove,

εα = −iYα

(1 +ϕα)

(1 − ZsYα − (1 + ZsYα)ϕα)
, (6)

with

φα = e2ikαwα
(1 − ZsYα)

(1 + ZsYα)
, (7)
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being wα the depth of the groove, and kα =
√

k2
0 − (απ/aα)2,

k0 ≡ 2π/λ and Yα = k0/kα. The coupling between the two
sides of the slit is taken into account by

Gv0 = 2i

(eik0h(1 + Zs)2 − e−ik0h(1 − Zs)2)
. (8)

Finally, Gαβ corresponds to the coupling between modes, re-
flecting that mode β emits radiation that can be collected by
mode α:

Gαβ =
xi + ai

2∫
xi − ai

2

dx

xj +
aj
2∫

xj −
aj
2

dx ′ (Φα
x

)∗
G(x, 0; x ′, 0)Φβ

x , (9)

with

G(x, z; x ′, z′) = i

λ

+∞∫
−∞

dk
e

i

(
k(x−x′ )+

√
k2

0−k2(z−z′)
)

√
k2

0 − k2 + k0Zs

. (10)

2.2 Emergence of surface plasmons

From a mathematical point of view, Gαβ in (9) is
the projection onto eigenmodes α and β of a scalar Green
function G(r, r ′) across the openings of the indentations at
which each mode is located. As Zs → 0, (10) transforms into
an integral representation of the 0th-order Hankel function of
the first kind [28], thus recovering the PCA in the low-energy
limit of our approach. Even within the SIBC approximation,
we find that the PCA result is still valid for |x − x ′| 	 λ.
However, the presence of Zs in (10) strongly modifies its long-
distance behavior. By means of asymptotic analysis, we have
found that, in the limit where |z − z′|, λ 	 |x − x ′|, oscillatory
contributions within the kernel of (10) mutually cancel but in
the region close to the integrand singularities at k = ±kp, with
kp satisfying

√
k2

0 − kp
2 = −Zsk0 . (11)

This is, by the way, the SPP dispersion relation of a flat metal–
dielectric interface within the SIBC. Therefore, the long dis-
tance EM coupling along the surface is due to SPPs even in the
presence of absorption. Hence, the function G can be approx-
imated as

Gas(x, z; x ′, z′) = −k2
0 Zs

kp
ei(kp|x−x′ |−k0 Zs|z−z′|) . (12)

Comparison with the exact result in the optical regime shows
that the asymptotic limit is already reached for distances of
about λ. For example, in the case of silver at λ = 750 nm, we
find that Gas(r, r ′) differs from G(r, r′) by less than 10% for
|x − x ′| ≈ 2λ (see Fig. 2). It is this knowledge of long-distance
EM coupling being mediated by surface plasmon polaritons
that allows us to use the system in Fig. 1 for the analysis of
SPP scattering.

FIGURE 2 Comparison between full calculation (solid lines), perfect con-
ductor approximation (dashed) and asymptotic expansion (dotted) of the
real (a) and imaginary (b) parts of λG(x, 0; x′, 0) as a function of distance
at an air/Ag interface. Here λ = 750 nm and Zs = 1.338×10−3 −0.1975i

2.3 Obtention of the scattering magnitudes

Let us now examine the term G0α E ′
0 in (4). Accord-

ing to (9), it can be interpreted as an illumination term orig-
inated by the EM field that the slit radiates onto the grooves.
Thus, the equations governing the EM fields at the grooves
become

(Gαα − εα)E ′
α +

∑
β �=α,0

Gβα E ′
β = Ĩα , (13)

where Ĩα ≡ −Gα0 E ′
0 are defined to resemble the back-side il-

lumination I0. The key point is that, according to (12), every
Ĩα corresponds to a SPP illumination on the mode α, modu-
lated by a constant factor that depends on the metal thickness,
the intensity of the back illumination and the width of the slit.
Within linear response, this factor is not relevant for the deter-
mination of scattering coefficients so the whole slit can then
be treated as a theoretical artifact for SPP launching.

Once the self-consistent {E ′
α} are obtained, the calculation

of the EM field in all space is straightforward, and therefore
both the emittance S (which is the fraction of incoming SPP
energy radiated into vacuum) and its angular distribution. As
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the EM coupling between the grooves and a distant point on
the surface is due to SPP, we can also obtain the SPP reflection
(r) and transmission (t) amplitudes:

r =
N∑

α=1

�αeikp xα E ′
α , t = 1 +

N∑
α=1

ταe−ikp xα E ′
α , (14)

where

�α = −i
k2

0 Zs

kp
Axαc∗

α ; τα = −i
k2

0 Zs

kp
Axαcα (15)

and

cα = aα

2

[
ei απ

2 sinc
[aα

2
k−

p

]
+ e−i απ

2 sinc
[aα

2
k+

p

]]
(16)

is a geometrical coefficient associated to each mode, with
k±

p = kp ±απ/aα.
Notice that, if absorption is present, Im [kp] �= 0 and the

SPP reflected and transmitted currents depend on the points
(rR, rT ) at which the EM are evaluated, reflecting the absorp-
tion loss in the flat regions of the metal surface. This suggests
that the scattering coefficients should be extracted from the
EM fields at points close to the grooves, although in this case it
is difficult to separate the diffractive contribution from the one
due to SPPs. Nevertheless, provided that the grating lengths
considered are shorter than the SPP absorption length, absorp-
tion can be neglected when computing the scattering magni-
tudes. In what follows, we present the results obtained under
such assumption for finite periodic arrays of N identical rect-
angular grooves, patterned on a Ag film.

3 Scattering of SPPs by a finite periodic array
of rectangular grooves

3.1 Beyond the lowest mode approximation

In [25] we presented reflectance, transmittance and
emittance curves of SPP scattering by different finite groove
arrays consisting of identical rectangular grooves with width
a = 100 nm and depth w = 50 nm separated by a period d of
600 nm. Those calculations were performed considering only
the lowest mode inside each groove, which is quite reasonable
for small a/λ. However, one may expect some corrections
when including additional modes inside the indentations.

Figure 3a–c render the calculated reflectance R = |r|2,
transmittance T = |t|2 and emittance S spectra for the above-
mentioned geometrical parameters in the case of a system
composed of 10 grooves. Solid and dashed lines correspond
respectively to lowest mode (α = 0) and multimodal (up to
α = 2) expansions in (3). As can be seen, small differences
arise between every pair of curves, which are only visible
at the low-λ edge of the spectra. Hence, both position and
size of the spectral resonances within the working interval
are very well described by the lowest mode approximation
(LMA), as hypothesized in [25]. Within the working interval,
no changes were observed when including additional modes.
Consequently, a multimodal expansion up to α = 2 is adopted
hereafter unless otherwise stated.

FIGURE 3 Calculated R (a), T (b) and S (c) curves of SPP scattering
by a finite periodic array consisting of 10 grooves on an Ag film. Here,
a = 100 nm, d = 600 nm and w = 50 nm. Solid lines correspond to the lowest
mode (α = 0) and multimodal (α ≥ 2) approximations respectively

3.2 Resonant spectral features

Calculated R, T and S spectra for increasing values
of N are presented in Fig. 4a–c. In the case of a single groove
(top panel), T increases with λ, while both R and S decrease.
This is due to two mechanisms. First, there is a decrease of the
relative size of the groove with respect to λ, which manifests
in Gαβ scaling as (a/λ). Second, as |ε(λ)| increases, the SPP
is more extended in the air region and therefore less sensitive
to the presence of obstacles at the surface. Panels b and c show
how the addition of more grooves greatly modifies the optical
response of the system.

As N increases, transmission gaps develop, as well as
sharp resonances in both R and S. In order to gain insight into
the origin of this behavior, it is helpful to analyze the EM sur-
face modes of an infinite groove array. This can be readily
done by looking for solutions to (13), imposing both Ĩα = 0
and Bloch theorem (i.e. E ′

α = E ′eikx αd , kx being the surface
state wavevector at the given wavelength). The band struc-
ture (solid line) for surface modes in a periodic structure with
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FIGURE 4 Calculated R (solid), T (dashed) and S (dotted) curves of SPP
scattering by a finite periodic groove array on a Ag film. Here, a = 100 nm,
d = 600 nm and w = 50 nm. Results in (a–c) correspond to structures with 1,
5 and 10 grooves respectively. Panel (d) shows the band structure (solid lines)
for the same parameters as in (a–c) and the SPP dispersion relation in a flat
air/Ag interface (dots). Gray-striped areas mark the photonic gaps

the same geometrical parameters as in (a) to (c) is presented
in Fig. 4d, as well as the dispersion relation of SPPs in a flat
air/silver interface (dots). As expected [37], band gaps occur
with a low-λ edge given by kpd = mπ with m = 1, 2, ..., i.e.
by the folding of the dispersion relation in a flat surface. On
the contrary, the high-λ edge depends on the geometry of the
grooves, as it corresponds to a SPP standing wave with max-
ima at the groove positions. Evidently, spectral regions of low
T in the finite array coincide with gaps in the band struc-
ture. Energy conservation implies a corresponding increase
in R+ S, but it is not obvious how this increase is divided
between these two channels. However, there is a simple argu-
ment for the existence of reflection maxima. Let us consider
the SPP wavefields emitted by two consecutive grooves in the
region of reflection. There is an “optical path” phase differ-
ence of kpd between these waves. Additionally, there is also
a phase difference between emitters that is equal to kxd in the
case of a infinite system. But, as previously noted,

kxd = kpd = mπ (17)

at the low-wavelength gap edge so the SPP wavefields
launched by all grooves interfere constructively (notice that
they also interfere constructively in the transmission region,
but not with the incident field). As λ is increased away from
this condition, the constructive interference is progressively
lost, R decreases and, for λ within the T -gap, S increases. If
λ crosses the gap edge, the transmission channel is open, and

FIGURE 5 Maximum values of R (a) and S (b) as a function of the num-
ber of grooves in the vicinity of kpd = 2π for the same w, d as in Fig. 4 and
increasing values of a

S decreases. Therefore, S presents peaks at the high-λ edges
of the gaps, as can be seen in Fig. 4. This mechanism explains
the heuristic criterion for optimum mirror efficiency presented
in [5] as well as the strong asymmetry in the positions of the
reflectance peaks reported in [38].

Figure 5 renders the maximum R and S as a function of
the number of grooves in the vicinity of kpd = 2π for the
same w and d parameters as in Fig. 4, and increasing values
of the groove width. In order to reach convergence, addi-
tional modes have to be incorporated for a = 200, 300 nm up
to α = 3 and α = 4, respectively. Please notice that a small
number of indentations are sufficient to achieve either a large
in-plane reflection or a high emission out of the plane. This
rapid saturation is also consistent with [5]. With respect to the
groove width, it clearly favors the out-of-plane efficiency of
every single scatterer, increasing the total emittance at the ex-
pense of the mirror efficiency.

3.3 Dependence on groove depth

As the line of reasoning that leads us to the resonant
condition of (17) does not take in to account the role of the
groove depth w, we find it worthwhile to analyze with some
detail how the SPP scattering is influenced by this geometri-
cal parameter. The dependence of R, T, S on groove depth is
depicted in Fig. 6, for N = 10, a = 100 nm and d = 600 nm.
As can be seen, the maxima of R at wavelengths satisfy-
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FIGURE 6 Contour plots of R (a), T (b) and S (c) vs. both groove depth
and wavelength for the same N, a, d as in Fig. 4c

ing kpd = mπ vary weakly on w for most ranges of groove
depth. Such a weak dependence may be relevant for device
design, considering that the control of w is often the most
difficult point in groove fabrication. However, spectra show
some extra features at resonant wavelengths that deserve fur-
ther attention.

First of all, the reflection is very small at some values of
w for which a maximum is expected according to (17). Simul-
taneously, at these groove depths, S ≈ 0 and T ≈ 1. However,
there also exist “hot-spots” for which R rises to a maximum
well-above its average value within the depth interval. These
fluctuations in the resonant behavior are directly related to
the modal amplitudes {E ′

α} at the openings of the grooves,
which depend on the interference between the incident field
and the one that is reflected on the closed end of the inden-
tation. Thus, a destructive interference results in the in-plane
EM field being very small so no plasmon scattering takes
place. As the optical response of the array then equals that of
a flat surface, one could say that the grooves “become invis-

FIGURE 7 Calculated R (solid), T (dashed) and S (dotted) vs. groove
depth curves for a finite array composed of 10 grooves on an Ag film. Here,
d = 600 nm and λ = 619 nm. Results in (a) and (b) correspond to struc-
tures with a = 10 nm and a = 100 nm, respectively. Vertical dashed (dotted)
lines mark the condition for destructive (constructive) interference within
the LMA

ible”. Conversely, constructive interference maximizes SPP
scattering, being the in-plane vs out-of-plane ratio governed
by the considerations presented in Sect. 3.2.

On the assumption of LMA, analytical expressions related
to such interference processes can be found for grooves in the
limit a/λ → 0. We want to stress that this limit exceeds the
range of validity of SIBC (see Sect. 2) and has only an aca-
demic value, as far as any realistic description should take into
account the dependence of the propagation constant on the
conductivity [36]. Nevertheless, we expect it to be helpful for
clarifying the origin of extra features in Fig. 6.

According to the aforementioned expressions, the min-
ima of the in-plane EM field should appear at wn ≈ nλ/2 for
integer values of n, whereas the condition for constructive in-
terference is fulfilled for

wm ≈ λ

4π
(arccos{−Re [ϕ]/|ϕ|2}+2πm) (18)

with ϕ = (1 − Zs)/(1 + Zs) and m also being an integer. No-
tice that the latter equation is no more than the SIBC version
of the criterion about the number of nodes in groove cavity
modes previously presented in [28]. In order to check the va-
lidity of such estimates we present in Fig. 7 the dependence
on groove depth of the scattering magnitudes calculated at the
resonant wavelength λ = 619 nm (kpd = 2π) for two very dif-
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ferent groove widths and the same N, d as in Fig. 6. As can be
seen, the positions of maxima and minima are very well de-
scribed by the analytical expressions for the purely academic
case with a = 10 nm. With respect to that of a = 100 nm,
we have to stress that the condition for “invisibility” is still
in good agreement with the lowest mode approximation. Of
course, the relative weight of in-plane and out-of-plane scat-
tered energy does not depend on groove depth in a such trivial
way, but LMA provides a starting point for a further optimiz-
ing of SPP scattering devices.

3.4 Directionality properties of the emitted light

One of the possible applications of finite arrays of
indentations lies in their capability to convert SPPs into light.
Therefore, it is worth studying the directionality properties
of the emitted light in the system analyzed throughout this
paper. For that purpose, we find it helpful to write the total
out-of-plane scattered energy S at a given wavelength λ in the
following form

S(λ) =
π/2∫

−π/2

dθD(θ) , (19)

where D(θ) is the differential reflection coefficient (DRC),
which provides the angular dependence of the radiated en-
ergy. In addition to this, we can also define a normalized DRC
as D̃(θ) ≡ D(θ)/S. This auxiliary magnitude describes the
sole spatial distribution of S without considering its integrated
value.

Figure 8 shows the calculated D̃(θ) for the two emittance
maxima at the low-energy edges of the gaps (λ = 665 nm and
λ = 500 nm) in Fig. 4(c), as well as for the two associated
reflectance maxima (λ = 510 nm and λ = 438 nm). The dis-
tributions corresponding to the gap labelled with m = 2 (solid
and dashed curves) are beamed close to the normal. On the

FIGURE 8 Normalized DRC for an array of grooves with the same a, d, w,
and N as in Fig. 4c. The wavelengths of the incident radiation corresponds
to that of the R, S maxima at the edges of the SPP band-gaps in Fig. 4d:
λ = 665 nm (solid line), λ = 619 nm (dashed line) for m = 2 and λ = 510 nm
(dotted line), and λ = 438 nm (dash-dotted line) for m = 3

contrary, the ones coming from the gap with m = 3 (dotted
and dash-dotted curves) are beamed at higher angles. Notice
that, at the condition of kp d = mπ, {Eα} are proportional to
(−1)(mα). Consequently, the radiated energy is sent out mainly
at the normal direction for even m and close to tangent for
odd m.

4 Summary

In this paper we have studied the scattering proper-
ties of a sub-wavelength periodic array of rectangular grooves
in the visible and near IR ranges by means of a multimodal
expansion technique. We have found that, associated with the
low-λ edge of the SPP band gap, the array behaves as a mir-
ror (up to 80% reflectance for typical experimental values)
whereas at the high-λ edge, most of the light carried out by the
SPP can be converted into collimated light (up to 90%). We
have also shown that this resonant behavior can be achieved
with a small number (∼ 5–10) of indentations and it is gener-
ally quite robust with respect to variations in the groove depth.
However, particular values of w can either increase or sup-
press the scattering efficiency of the whole structure. In our
opinion, such a depth-tuning clearly constitutes a stimulating
challenge for SPP-scattering devices.
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