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Dipole resonances of nonabsorbing dielectric nanospheres in the optical range: Approximate
explicit conditions for high- and moderate-refractive-index materials
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In this work, we discuss the way in which electric and magnetic dipole resonances arising in the optical
scattering spectrum of nonabsorbing dielectric nanospheres can be accurately approximated by means of simple
explicit expressions that depend on the sphere’s radius, incident wavelength, and relative refractive index. We find
such expressions to hold not only for high- but also for moderate-refractive-index values, thus complementing
the results reported in previous studies.
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I. INTRODUCTION

Scattering of light by metallic nanoparticles shows a
strongly resonant behavior within the optical region, which
permits us to consider them as a sort of optical antennas [1],
given their ability to redirect freely propagating light into
localized energy, and vice versa. When in the subwavelength
regime, such resonant nanoparticles may even be used as
building blocks for optical metamaterials [2,3] or metaob-
jects [4–6]. Although systems based on metallic nanoparticles
have raised the prospect of some very promising applications
[7,8], they also suffer from two significant limitations when
operated within the optical range: they are intrinsically lossy
and do not exhibit any intrinsic magnetic response. As a
consequence of this, many efforts have been recently devoted
to obtain the same functionalities by means of nonabsorbing
purely dielectric nanoparticles [9–14], which show magnetic
resonances arising from the circulation of light-induced inter-
nal displacement currents.

From all possible dielectric nanoparticles, spherical ones
are especially well suited to be used as nanoresonators, given
their ease of synthesis by either chemical or physical methods
and the fact that Mie theory [15] explicitly provides the
scattering efficiency of a sphere as a function of the incident
wavelength, the sphere’s radius, and its relative refractive
index with respect to that of the surrounding medium. Hence,
different arrangements have been proposed for purposes of
sensing [16,17] and directional control of scattered radiation
[18–22] that are based on the selective excitation of reso-
nances at dielectric nanospheres. In most of these propos-
als, the obtained scattering response is mainly dominated by
dipole resonances, which are those with the lowest energy.

If it were possible to predict the occurrence of a dipole
resonance for a triplet of sphere’s radius, incident wavelength,
and refractive index value without the actual evaluation of
Mie scattering coefficients, this would undoubtedly result in
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the easing of nanosphere-based designing. Some previous
studies have partially achieved such an objective: Explicit
expressions for resonances with any multipolar order and any
ordinal number arising in nonabsorbing high-refractive index
spheres have been presented in a recent paper [23]. Other
authors have obtained similar results for the resonances with
the lowest ordinal number of every multipolar order that can
be excited in a sphere with a generic real [24] or complex
refractive index [25,26]. In this work, we discuss the way
in which triplets giving rise to electric and magnetic dipole
resonances with any ordinal number in nonabsorbing spheres
can be approximately determined from simple explicit expres-
sions that hold not only for high-refractive-index but also for
moderate-refractive-index values, thus complementing those
reported in the above-mentioned references.

The paper is structured as follows: In Sec. II we review the
basics of light scattering by a nonabsorbing dielectric sphere
and introduce scattering coefficients and related magnitudes.
Section III details the way in which dipole resonances arising
in the scattering efficiency of high- and moderate-refractive-
index spheres can be accurately approximated without the
need for full Mie calculation. The validity of these approx-
imations within the optical range for spheres made of Si,
Cu2O, and TiO2 is discussed in Sec. IV. Finally, in Sec. V
we summarize our work.

II. SCATTERING OF LIGHT BY A NONABSORBING
DIELECTRIC SPHERE

Let us suppose that a uniform, nonmagnetic, and non-
absorbing dielectric sphere with radius R is surrounded by
an also nonmagnetic and nonabsorbing dielectric medium.
The dimensionless scattering efficiency for light propagating
through the surrounding medium with wavelength λ can then
be expressed as

Qsca (x, m)= 2

x2

∞∑
l=1

(2l + 1)[|al (x, m)|2 +|bl (x, m)|2], (1)
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FIG. 1. Calculated scattering efficiency Qsca (solid line) as a
function of size parameter x for a dielectric sphere with m =
3.75. Dashed and dotted curves show the values of Qa1

sca and Qb1
sca,

respectively.

where x = 2πR/λ > 0 is the size parameter and m the relative
refractive index of the sphere with respect to that of the
medium [27]. The dependence of Qsca on m (and mostly on
x) is contained in the scattering coefficients al and bl , which
represent, respectively, the subsequent electric and magnetic
contributions to the multipolar expansion (that is, dipole for
l = 1, quadrupole for l = 2, octupole for l = 3, hexadecapole
for l = 4, ...) of scattered fields.

Following Refs. [28,29], we find it convenient to write
al , bl in the form

al (x, m) = pl (x, m)

pl (x, m) + iql (x, m)
, (2a)

bl (x, m) = rl (x, m)

rl (x, m) + isl (x, m)
, (2b)

where

pl (x, m) = mψl (mx)ψ ′
l (x) − ψl (x)ψ ′

l (mx), (3a)

ql (x, m) = −mχ ′
l (x)ψl (mx) + χl (x)ψ ′

l (mx), (3b)

rl (x, m) = mψl (x)ψ ′
l (mx) − ψl (mx)ψ ′

l (x), (3c)

sl (x, m) = −mχl (x)ψ ′
l (mx) + χ ′

l (x)ψl (mx). (3d)

In Eqs. (3), ψl (z) = z jl (z) and χl (x) = −xyl (x) are the
Ricatti-Bessel functions, which are connected, respectively,
to the spherical Bessel functions jl and yl [30]. The prime
denotes the derivative with respect to the entire argument of
the corresponding function. Please notice that the convenience
of writing the scattering coefficients in this fashion rests on
the fact that auxiliary functions pl , ql , rl , and sl can only
take real values as a direct consequence of m’s being real
[31]. This also prevents divergencies in Qsca, which shows
resonances if either ql (x, m) or sl (x, m) vanish. Given m and
l , there are infinitely many positive values of x that fulfill such
conditions, due to the oscillatory nature of the Ricatti-Bessel
functions.

As an illustration of this behavior, we present in Fig. 1
the calculated scattering efficiency Qsca (solid line) as a func-
tion of size parameter x for a sphere with m = 3.75, which
corresponds to the average value of the range m = 2.5 to 5.
In order to point out the the origin of different resonances,
we also include the specific contribution of dipole terms by
means of auxiliary quantities Qa1

sca = 6|a1|2/x2 (dashed line)
and Qb1

sca = 6|b1|2/x2 (dotted line). As can be seen, dipole
contributions dominate the scattering response for x � 1.15,
with magnetic and electric resonances located at x = 0.86 and
1.10, respectively.

Let us consider that the sphere is made by silicon and sur-
rounded by air. Hence, the incident wavelength for its relative
refractive index to be 3.75 is 720 nm [32]. This implies that
a sphere with radius R ≈ 99 nm will show a magnetic dipole
resonance for that particular wavelength, which, in contrast,
will give rise to a mostly electric resonance for R ≈ 126 nm.
If one increases the sphere’s radius up to 190 nm (that is
x = 1.66), Qb1

sca will show another peak, although the total
scattering efficiency significantly reduces with respect to its
value for x = 0.86. It is then clear that, given two of the three
m, λ, and R parameters, dipole resonances can only appear
for some specific values of the third one. In the following
sections, we will discuss the way in which resonant (m, λ, R)
triplets can be approximately determined without the actual
evaluation of neither a1 nor b1.

III. APPROXIMATE DETERMINATION OF ELECTRIC
AND MAGNETIC DIPOLE RESONANCES

On the assumption that m is kept as a constant, let
{xa1,1

res , xa1,2
res , . . . , xa1, j

res , . . .} be the set of infinitely many pos-
itive solutions to

mχ ′
1

(
xa1, j

res

)
ψ1

(
mxa1, j

res

) = χ1
(
xa1, j

res

)
ψ ′

1

(
mxa1, j

res

)
, (4)

where j = 1, 2, . . . is a positive integer number. Hence, an
electric dipole resonance appears in Qsca for any pair of values
of R and λ that meet the condition R/λ = xa1, j

res /2π , with
the caveat that m also depends on λ. For magnetic dipole
resonances, we can then define {xb1,1

res , xb1,2
res , . . . , xb1, j

res , . . .} as
the analog infinite set of positive solutions to

mχ1
(
xb1, j

res

)
ψ ′

1

(
mxb1, j

res

) = χ ′
1

(
xb1, j

res

)
ψ1

(
mxb1, j

res

)
. (5)

In order to determine {xa1, j
res } and {xb1, j

res }, let us now take a
closer look to the explicit form of the Ricatti-Bessel functions
for l = 1:

ψ1(mx) = sin mx

mx
− cos mx, (6a)

ψ ′
1(mx) = − sin mx

(mx)2
+ cos mx

mx
+ sin mx, (6b)

χ1(x) = cos x

x2
+ sin x, (6c)

χ ′
1(x) = cos x − 2 cos x

x3
− sin x

x2
. (6d)

It is clearly apparent that Eqs. (6) can be greatly simplified
for some limiting values of x and m, thus making it easier to
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solve Eqs. (4) and (5). In particular, we will consider three
different scenarios that are hereafter described in order of
increasing complexity.

A. Approximations to xa1, j
res and xb1, j

res for x � 1; m � 1

It can be shown from Eqs. (6) that both |χ1ψ
′
1| and |χ ′

1ψ1|
are less than one for x � 1 whatever the value of m. For m �
1, functions q1 and s1 can therefore be approximated as

q1(x, m) ≈ −mχ ′
1(x)ψ1(mx), (7a)

s1(x, m) ≈ −mχ1(x)ψ ′
1(mx). (7b)

As far as mx � x, solutions to Eqs. (4) and (5) will then be
defined by the following conditions [23]:

ψ1
(
mxa1, j

res

) ≈ 0, (8)

ψ ′
1

(
mxb1, j

res

) ≈ 0. (9)

Let us now assume that mx is large enough to disregard all
but purely sinusoidal terms in Eqs. (6a) and (6b). Hence,
determination of resonances simplifies even more, as size
parameters would only have to meet the conditions of Eqs. (8)
and (9) up to the zeroth order in powers of 1/mx:

cos mxa1, j
res(0) = 0, (10a)

sin mxb1, j
res(0) = 0, (10b)

the extra subscript being added in order to avoid any confusion
with subsequent results hereafter.

From Eqs. (10), the well-known expressions

xa1, j
res(0)(m) =

(
j + 1

2

)
π

m
, (11)

xb1, j
res(0)(m) = jπ

m
(12)

are readily obtained. With respect to Eq. (11), it has to be
pointed out that we have set the zeroth-order fundamental
resonance to 3π/2m (and not to π/2m) in order to be consis-
tent with x � 1. Nevertheless, we would rather preserve the
full version of Eqs. (8) and (9) and find their solutions by
expanding in a Taylor series about xa1, j

res(0) and xb1, j
res(0) [cf. Eqs.

(8.13) and (8.14) in Ref. [23]]:

xa1, j
res(1)(m) = xa1, j

res(0)(m)

[
1 − 1(

j + 1
2

)2
π2 − 1

]
, (13)

xb1, j
res(1)(m) = xb1, j

res(0)(m)

[
1 − 1

j2π2 − 2

]
. (14)

As far as the obtained expressions are nothing other than
the sequential zeros of j1(mx) and mx j0(mx) − j1(mx), their
numerical precision can be extended on demand by means of
standard techniques [30].

B. Improved approximations to xa1,1
res and xb1,1

res

According to Eq. (13), we expect the size parameter for
fundamental electric dipole resonance to be approximately
equal to 1.43 in units of π/m. However, as can be seen
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FIG. 2. Calculated q1(x, m) (a) and s1(x, m) (b) as a function of
mx/π . Solid, dashed, and dotted curves show the values for m =
2.5, 3.75, and 5, respectively. Vertical dashed-dotted lines mark the
values of xa1,1

res(0), xa1,1
res(1), xb1,1

res(0), and xb1,1
res(1) in units of π/m.

in Fig. 2(a), that value actually defines some upper bound
that is not reached even for m = 5. For the fundamental
magnetic dipole resonance in Fig. 2(b), xb1,1

res(0) seems to provide

a better approximation than xb1,1
res(1), although neither of them

completely capture the dependence of xb1,1
res on m. It is then

clear that assumptions made in Sec. III A are too restrictive to
provide accurate results for the position of fundamental dipole
resonances when m lies between 2.5 and 5. We will therefore
attempt a different approach.

Let us keep all the terms in Eqs. (4) and slightly recast them
so that the two kinds of Ricatti-Bessel functions are separated:

1

m

ψ ′
1

(
mxa1,1

res

)
ψ1

(
mxa1,1

res
) = χ ′

1

(
xa1,1

res

)
χ1

(
xa1,1

res
) . (15)

In Fig. 3(a) we present the graphical solution to Eq. (15) for
m = 3.75. As can be seen, the intersection of ψ ′

1/mψ1 (solid
line) and χ ′

1/χ1 (dashed line) takes place for some xa1,1
res that is

located in the vicinity of xa1,1
res(1), which is the first positive zero

of ψ1(x, m). Therefore, the solution of Eq. (15) is close to an
infinite discontinuity (pole) of ψ ′

1/ψ1. We can then replace
such a function by its [0/1] Padé approximant [33] at x =
xa1,1

res(1)(m), that is,

1

m

ψ ′
1(mx)

ψ1(mx)
≈ 1

m2
(
x − xa1,1

res(1)(m)
) . (16)

With respect to the right-hand side of Eq. (15), we find
it convenient to make use of a [0/1] economized rational
approximation (ERA) [34] to χ ′

1(x)/χ1(x) over the inter-
val xa1,1

res(1)(5) ≈ 0.9 to xa1,1
res(1)(2.5) ≈ 1.8 in order to obtain

an error distribution that is more uniform than that of the
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FIG. 3. Graphical determination of the fundamental electric
(a) and magnetic (b) dipole resonances for m = 3.75. Solid and
dashed curves in (a) show the exact values for left- and right-hand
sides of Eq. (15), respectively. Open (◦) and solid (•) symbols denote
their proposed approximations (see text). Same conventions apply for
Eq. (5) in (b). Vertical dashed-dotted lines mark the positions of xa1,1

res(1)

and xb1,1
res(0).

corresponding Padé approximant about the midpoint:

χ ′
1(x)/χ1(x) ≈ 2

(3 − 5x)
. (17)

From the right-hand sides of Eqs. (16) and (17) [which are
represented in Fig. 3(a) by open and solid symbols, respec-
tively], we finally arrive to an improved explicit expression
for the position of the fundamental electric dipole resonance:

xa1,1
res(2)(m) = xa1,1

res(1)(m) + 3
2m2

1 + 5
2m2

. (18)

For the determination of the fundamental magnetic dipole
resonance, we will keep Eq. (5) in its original form. As
previously shown in Fig. 2(b), xb1,1

res is very close to xb1,1
res(0) (in

fact, xb1,1
res is exactly equal to 1 for m = π ). We can therefore

approximate each side of Eq. (5) by its corresponding linear
Taylor expansion about x = π/m:

mψ ′
1(mx)χ1(x) ≈ L0(m) + L1(m)

(
x − π

m

)
, (19a)

χ ′
1(x)ψ1(mx) ≈ D0(m) + D1(m)

(
x − π

m

)
, (19b)

where

L0(m) = −m3

π3
cos

π

m
− m

π
sin

π

m
, (20a)

L1(m) =
(

m4

π4
(4 − π2) − m

π

)
cos

π

m

+
(

m3

π3
+ m2

π2
(2 − π2)

)
sin

π

m
, (20b)

D0(m) =
(

1 − 2m3

π3

)
cos

π

m
− m2

π2
sin

π

m
, (20c)

D1(m) =
(

8m4

π4
− m2

π2
− m

π

)
cos

π

m

+
(

5m3

π3
− 1

)
sin

π

m
. (20d)

The intersection of the right-hand sides of Eqs. (19a) and
(19b) provides an excellent approximation to xb1,1

res , as can
be seen in Fig. 3(b) for m = 3.75 (open and solid symbols).
By expanding sin π/m and cos π/m up to the third order in
powers of π/m, the position of the resonance can then be
expressed as

xb1,1
res(2)(m) = xb1,1

res(0)(m) + �xb1,1
res (m), (21)

where �xb1,1
res (m) is a quotient of polynomial functions of m.

For m ∈ [2.5, 5.5], we can safely replace it by its [1/2] Padé
approximant at m = π :

�xb1,1
res (m) ≈ (m − π )

5m2 − 20m + 35
. (22)

Figure 4 shows the calculated values of size parameter as
a function of m for the fundamental electric and magnetic
dipole resonances of a nonabsorbing dielectric sphere with its
relative refractive index between 2.5 and 5. Open symbols (◦)
denote the numerical solutions to Eqs. (4) and (5), whereas
solid, dashed, and dotted lines show the values of the proposed
approximations to xa1,1

res and xb1,1
res with subscripts (0), (1),

and (2), respectively. As can be seen in Fig. 4(a), the size
parameter corresponding to the fundamental electric dipole
resonance ranges between 1.45 for m = 2.5 and 0.87 for m =
5. These values are systematically overestimated by xa1,1

res(0),
which bears a percentage error that increases from %error =
+8 for m = 5 to %error = +28 for m = 2.5. As regards xa1,1

res(1),
one may observe that it shows an acceptable agreement with
the numerical results about m = 5 and then becomes much
less reliable as m decreases (%error = +21 for m = 2.5). On
the other hand, proposed xa1,1

res(2) keeps the absolute value of
percentage error below 2 for the entire range of refractive
index values, thus providing a significant improvement to the
approximate determination of xa1,1

res .
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FIG. 4. Calculated size parameter as a function of m for the
fundamental electric (a) and magnetic (b) dipole resonances. Open
symbols (◦) in (a) correspond to the numerical solution to Eq. (4),
whereas solid, dashed, and dotted curves show the values of the
proposed approximations to xa1,1

res with subscripts (0), (1), and (2)
(see text). Same conventions apply for Eq. (5) and xb1,1

res in (b).

With respect to the fundamental magnetic dipole reso-
nance, we have already mentioned that xb1,1

res(0) provides an
estimate for xb1,1

res that is exact for m = π . As shown in
Fig. 4(b), the size parameter is slightly overestimated for m
below π , whereas it is equivalently underestimated for m
above such threshold. The absolute value of percentage error
does not exceed 6 for any considered value of m. Unlike
xa1,1

res(1), xb1,1
res(1) does not improve the approximation to the reso-

nance. Conversely, it consistently underestimates the resonant
size parameter throughout the interval with a percentage error
that ranges between %error = −10 for m = 2.5 and %error =
−18 for m = 5. Fortunately, the xb1,1

res(2) approximation is in turn
found to be 99% accurate for the range between m = 2.5 and
5, which shows the convenience of this approach.

In order to better understand the very different reliability of
approximations with subscript (0) for the fundamental electric
and magnetic dipole resonances, let us now consider an issue
that seems at first sight unrelated to the subject, namely,
the determination of fundamental dipole antiresonances. If
either |a1|2 or |b1|2 vanish for m > 1, dipole contributions

to scattering are then suppressed, thus producing a noticeable
deep in Qsca (see, e.g., Fig. 1) unless other multipolar orders
be dominant. Dipole resonances and their antagonists are,
by the way, very close to each other so that plots of |a1|2
and |b1|2 as a function of either x or m exhibit a Fano-type
line shape [23,35,36]. Aside from their fundamental interest,
dipole antiresonances may also be relevant by themselves for
the designing of dielectric nanoresonators [37].

According to Eq. (2), an electric dipole antiresonance is
expected to happen whenever p1(x, m) is equal to zero. By
following exactly the same procedure as in Sec. III A, we
obtain that approximations with subscripts (0) and (1) for the
fundamental electric dipole antiresonance do coincide with
those of xa1,1

res :

xa1,1
antires(0)(m) = xa1,1

res(0)(m) = 3π

2m
, (23)

xa1,1
antires(1)(m) = xa1,1

res(1)(m) = 3π

2m

(9π2 − 8)

(9π2 − 4)
. (24)

It is not but up to approximation with subscript (2) [that
is, [0/1] Padé for ψ ′

1(mx)/mψ1(mx) and [0/1] ERA for
ψ ′

1(x)/ψ1(x)] that size parameters of resonance and antires-
onance depart from each other:

xa1,1
antires(2)(m) = xa1,1

antires(1)(m) − 5
7m2

1 − 8
7m2

. (25)

In contrast, approximation with subscript (0) for the funda-
mental magnetic dipole antiresonance leads us to

xb1,1
antires(0)(m) = 2π

m
(26)

and not to π/m. The subsequent linear expansion of

r1(x, m) = 0 (27)

about xb1,1
antires(0) allows one to obtain

xb1,1
antires(2)(m) = xb1,1

antires(0)(m) + �xb1,1
antires(m), (28)

with

�xb1,1
antires(m) ≈ 58(99 − 46m)

5(1100m2 − 2155m + 425)
. (29)

Let us now revisit the scattering response of a dielectric
sphere with m = 3.75 in the guise of the squared norms of
a1 and b1. Their corresponding line shapes in Fig. 5(a) show
very close maxima and minima and, in particular that for
b1, are definitely Fano type. As can be seen, the position
of fundamental antiresonances (either electric or magnetic)
agrees very well with approximations with subscript (2) that
are marked with vertical dashed-dotted lines. Interestingly
enough, it is also apparent that approximation with subscript
(0) is in fact much closer to the fundamental electric dipole
antiresonance than to its resonant counterpart, unlike that
for the magnetic dipole one (vertical solid lines). As shown
in Fig. 5(b), there is a good agreement between xa1,1

res/antires(0)

and xa1,1
antires(2) for all considered values of m, which closely

resembles that between xb1,1
res(0) and xb1,1

res(2) in Fig. 4(b). We can
therefore end our discussion with the conclusion that solution
of Eq. (8), although needed in order to finally obtain an
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FIG. 5. (a) Calculated values of |a1|2 (dashed) and |b1|2 (dotted) as a function of size parameter x for a dielectric sphere with m = 3.75.
Vertical solid lines show the approximated values of fundamental dipole resonances with subscript (0), whereas dashed-dotted ones mark the
positions of approximated antiresonances with subscript (2). (b) Calculated size parameters as a function of m for the approximations with
subscript (2) to the fundamental electric dipole resonance (dotted) and antiresonance (dashed-dotted). Solid curve shows the values of proposed
approximations with subscript (0).

accurate approximation to xa1,1
res , does in fact provide by itself

a good estimate for xa1,1
antires rather than for the position of the

fundamental electric dipole resonance.

C. Approximations to xa1, j
res and xb1, j

res for j > 1, mx � 1

When considering dipole resonances with different ordinal
number (that is, for j > 1), the solutions to Eqs. (4) and (5)
will no longer be close to xres = 1, but may take much larger
values. This implies that the condition mx � 1 can then be
met for some values of m that are significantly smaller than
those considered in Sec. III A. In such a scenario, it seems
again plausible to disregard nonsinusoidal terms in Eqs. (6a)
and (6b) but one can not take for granted the validity of
Eqs. (7). Consequently, we should keep contributions from
χ1ψ

′
1 and χ ′

1ψ1 when defining the approximations to q1 and
s1 for x � 1:

qx�1
1 (x, m) = m cos x cos mx + sin x sin mx, (30a)

sx�1
1 (x, m) = −m sin x sin mx − cos x cos mx. (30b)

As can be seen in Fig. 6, zeros of qx�1
1 agree with those

of q1 for x � 3 over the entire range of considered refractive
index values. For the case of s1 and sx�1

1 , such an agreement
can be found for x � 4. Hence, the positive solutions to

m cos x cos mx + sin x sin mx = 0, (31a)

m sin x sin mx + cos x cos mx = 0 (31b)

will provide a good approximation to successive electric and
magnetic dipole resonances with j > 1, respectively.

In order to obtain those solutions, we now return to our
previous discussion of xa1, j

res(0) and xb1, j
res(0). For the case of electric

dipole resonances, let j > 1 and m � 1, so that the position of
resonances is governed by the condition m cos x cos mx = 0.
Hence,

xa1, j>1
res (m) ≈ xa1, j>1

res(0) (m) =
(

j + 1
2

)
π

m
. (32)

As m goes down, xa1, j>1
res should go up inversely, due to

the continuity of size parameter and its inverse dependence
on m. But, such a continuous increase also implies that
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FIG. 6. (a) Calculated q1(x, m) (solid) and qx�1
1 (x, m) (dashed)

as a function of m for increasing values of size parameter. Curves
corresponding to x = 2, 3, 4 are artificially shifted for the sake of
clarity, with their actual zero baselines marked by horizontal dotted
lines. (b) Same conventions apply for s1(x, m) and sx�1

1 (x, m).
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resonant x should equal (g + 1
2 )π for some given m, with

g = 1, 2, 3, . . . . According to Eq. (32), we expect it to happen
for m = ( j + 1

2 )/(g + 1
2 ), but the couplet

(x, m) =
((

g + 1
2

)
π,

(
j + 1

2

)
(
g + 1

2

)
)

(33)

is not a solution of Eq. (31a), which is reduced to sin m(g +
1
2 )π = 0 for x = (g + 1

2 )π . In fact, it is

ma1, j
g = ( j + g)(

g + 1
2

) (34)

that fulfills Eq. (31a) for that particular x. A not-so-obvious
consequence of this mathematical condition is that every
time when m equals ma1, j

g , the resonant size parameter ex-
periences a “jump” of π

m opposite to the variation in m,
then promoting or demoting to the adjacent zeroth-order
resonance.

We can then expect the position of electric dipole reso-
nances with j = 2, 3, . . . to be approximately described by

xa1, j
res(3)(m)= xa1, j

res(0)(m) + π

m

∞∑
g=1

[
1 − H

(
m − ma1, j

g

)]
, (35)

where H (m) is a smooth analytical approximation to the
Heaviside step function [38]

H (m) = 1

2
+ 1

π
arctan hm (36)

in which h is left as a free parameter.
Following the same reasoning for magnetic dipole reso-

nances, we obtain

xb1, j
res(3)(m)= xb1, j

res(0)(m) + π

m

∞∑
g=1

[
1 − H

(
m − mb1, j

g

)]
, (37)

with

mb1, j
g =

(
j + g − 1

2

)
g

(
1 + δg1

π3 − 2

[
1 − 3(

j + 1
2

)2

])
, (38)

where δg1 is the Kronecker delta [39]. Please notice that
the extra summand for g = 1 is due to the discrepancy
between the zeros of s1(π, m) and those of sx�1

1 (π, m)
(see Appendix).

Figure 7 shows the calculated values of size parameter as
a function of m for successive electric and magnetic dipole
resonances with j > 1. Solid lines correspond to numerical
solutions of Eqs. (4) and (5), whereas dashed ones represent
the best fits of expressions in Eqs. (35) and (37) to data points.
Free parameter h is determined for every ( j, g) by means
of an iterative implementation of the Levenberg-Marquardt
algorithm [40,41]. For a given g, we find h to be negatively
proportional to j. On the other hand, h is directly proportional
to g if j is kept as a constant.1 As can be seen, expressions

1Obtained values for h in Fig. 7 can be approximated by (3g −
1)(14.52 − 1.82 j) and (2g − 1)(15.17 − 1.66 j) for the case of elec-
tric and magnetic dipole resonances, respectively.
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FIG. 7. Calculated size parameter as a function of m for higher-
order electric (a) and magnetic (b) dipole resonances of a nonabsorb-
ing dielectric sphere. Solid curves in (a) correspond to the numerical
solutions of Eq. (4) for increasing values of j, whereas dashed
curves show the best fits of our proposed xa1, j

res(3) to data points (see
text). Dotted curves mark the positions of sequential zeroth-order
resonances. Same conventions apply for Eq. (5) and xb1, j

res(3) in (b).

with subscript (3) provide a reliable description of dipole
resonances with j > 1 for the range between m = 2.5 and 5,
especially with respect to “jumps” between adjacent zeroth-
order solutions. In addition, curve fitting to data points keeps
the absolute percentage error below 2.5 all over the considered
refractive index range.2

From Fig. 7 it is also apparent that electric and magnetic
dipole resonances with j > 1 do coincide for precise values
of the relative refractive index (e.g. m ≈ 2.55 for j = 2).
However, the occurrence of “double-dipole” resonances does
not seem to cause any significant effects due to the dominance
of contributions other than dipole.

2With the sole exception of xa1,2
res(3), which systematically over-

estimates xa1,2
res for m > 2. Percentage error reaches its maximum

(+10%) at m = 4.5.
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FIG. 8. Real (solid) and imaginary (dashed) parts of the refrac-
tive index as a function of wavelength for Si, Cu2O, and TiO2,
obtained from Refs. [32,42,43], respectively. Vertical dashed-dotted
line marks the wavelength from which absorption can be neglected.

IV. DIPOLE RESONANCES FOR HIGH- AND
MODERATE-REFRACTIVE-INDEX MATERIALS

Up to this point, we have been focused on the solution
of equations. We now return to the scattering properties of
actual dielectric nanospheres in the optical range. For the sake
of simplicity, let us assume that our sphere is surrounded
by air, so that we can replace m by the sphere’s complex
refractive index n + ik. Given that all our findings have been
obtained for nonabsorbing materials, we require k ≈ 0. In
Fig. 8 we present the real and imaginary parts of the refractive
index as a function of wavelength for Si, Cu2O, and TiO2,
according to Refs. [32,42,43], respectively. As can be seen,
these three materials fulfill the requirement of not absorbing
light within the interval between 500 and 2000 nm and have
therefore been the subject of recent experimental research
on dielectric nanoresonators [21,22,44–49]. In addition, the
range of values of n within such interval for Si, Cu2O, and
TiO2 cover most of that of m that was considered in the
previous section. These materials seem, then, to be convenient
to test our improved approximate conditions by comparing
their predicted resonances with those obtained from the full
calculation of Qa1

sca and Qb1
sca.

It follows from the very definition of size parameter that

R�,1
res = λ

2π
x�,1

res (m(λ)), (39)

where � stands for either a1 or b1. We then substitute for
x�,1

res from Eqs. (18) and (21) into Eq. (39) in order to obtain
the best estimates for (m, λ, R) triplets exhibiting fundamental
dipole resonances. For the sake of comparison, we also calcu-
late the resonant radii corresponding to approximations with
subscript (0).

Panels in Fig. 9 show the calculated electric and magnetic
dipole contributions to the scattering efficiency of a dielectric
sphere as a function of the incident wavelength and the
sphere’s radius for Si, Cu2O, and TiO2. All calculated values
result from straightforward evaluation of Qa1

sca and Qb1
sca by

means of a homemade Mathematica script.3 Open (◦) and
solid (•) symbols correspond to the above-mentioned R�,1

res(0)

and R�,1
res(2), respectively. As can be seen, there is an excellent

agreement between the latter and numerical results for all
three materials across the considered wavelength range. In
addition, it is apparent that, by increasing the wavelength,
estimates with subscript (0) depart from the actual resonances
exactly in the same fashion as they do xa1,1

res(0) and xb1,1
res(0) when

m decreases (see Fig. 4).
In fact, Fig. 9 brings us up against some physical interpreta-

tion of resonant (m, λ, R) triplets. From considerations based
on geometrical optics (see, for example, Ref. [24]), it can
be figured out that electric dipole resonances occur when 2R
becomes approximately equal to an odd multiple of the half-
wavelength inside the sphere, which is precisely the prediction
of Eq. (11). However, Figs. 9(a), 9(c), and 9(e) show that, as
m decreases, electric dipole resonances take place for radii
that are smaller than Ra1,1

res(0), thus pointing out some sort of
effective increasing of the sphere’s size for moderate values
of m. In contrast, there is no such resizing for magnetic dipole
resonances, which appear for diameters that are equal to an
integer multiple of λ/m, aside from the correction prescribed
by Eq. (22).

With respect to such correction, we can notice the threshold
at m = π when comparing the three different materials: as
the refractive index of silicon is always higher than π , the
values of Rb1,1

res(0) are consistently lower than those of Rb1,1
res(2),

whereas it becomes just the opposite for TiO2. On the other
hand, the refractive index of Cu2O equals π about 570 nm,
so that the crossing between the two estimates is hard to
ascertain from Fig. 9(c). From such wavelength on, cuprous
oxide follows the same trend as titanium dioxide. Finally,
signatures of resonances with j = 2 are clearly apparent in
the upper left quadrant of every panel in Fig. 9. Nevertheless,
their corresponding scattering efficiencies are about one fifth
of those of the fundamental resonances and they do not seem
to be especially relevant for any of these materials.

Given that the zero-absorption threshold defined in Fig. 8
is somewhat arbitrary, we cannot close this section without
discussing the robustness of our obtained approximations
when dealing with some degree of dissipation. For a complex
relative refractive index m = m′ + im′′, there is no unequiv-
ocal correspondence between resonances and antiresonances
in Qa1

sca and Qb1
sca and zeros and poles in a1 and b1, so that

explicit expressions for resonant or antiresonant values of
size parameter become practically unattainable. However, one
could expect approximations based on the real part of m to
still hold for a weakly absorbing medium.

As a test for this hypothesis, we present in Fig. 10 the
calculated values of electric and magnetic dipole contributions
to the scattering efficiency as a function of size parameter x for
a dielectric sphere with m = 3.75 + im′′. Such a fixed value
for m′ corresponds to the midpoint of the interval between
2.5 and 5 that has been considered all along this work. It is
also in the range between those of n for Si and Cu2O at the

3Wolfram Research, Inc., Mathematica, Version 9.0, Champaign,
IL (2012).
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FIG. 9. Electric and magnetic dipole contributions to the scattering efficiency of a dielectric sphere as a function of the incident wavelength
and the sphere’s radius for three different materials: Si (a), (b), Cu2O (c), (d), and TiO2 (e), (f). Open (◦) and solid (•) symbols correspond to
estimates for resonant radii with subscripts (0) and (2), respectively.

wavelength from which absorption seems negligible in Fig. 8.
With respect to m′′, it is gradually increased from 0 to 1, which
is the maximum value of κ for silicon and cuprous oxide
above 400 nm. Please keep in mind that we have chosen this
setting for testing purposes only, as far as m′′ is connected with
m′ by causality and cannot therefore take arbitrary values.

As can be seen, all spectral features are significantly
damped and also slightly shifted as dissipation increases.

Direction of the spectral shift with respect to approxima-
tions with subscript (2) for m = 3.75 (vertical dashed lines)
seems to be opposite for fundamental electric and magnetic
resonances and antiresonances. Thus, the position of fun-
damental electric dipole resonance shifts from x = 1.10 for
m′′ = 0 to x = 1.06 (−4%) for m′′ = 0.5 and then returns
to x = 1.09 for m′′ = 0.75, which is the highest of the con-
sidered values that permits the resolution of the peak. In
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FIG. 10. Electric (a) and magnetic (b) dipole contributions to the scattering efficiency as a function of size parameter x for a dielectric
sphere with m = 3.75 + im′′. Solid curves correspond to increasing values of m′′. Vertical dashed lines mark the approximated positions of
fundamental dipole resonances and antiresonances for m = 3.75.

contrast, xa1,1
antires shifts oppositely (+1%) for m′′ = 0.75. On the

other hand, the size parameter of fundamental magnetic dipole
resonance evolves from x = 0.86 for m′′ = 0 to x = 0.91
(+6%) for m′′ = 0.5, whereas that for the antiresonance does
from x = 1.56 to x = 1.41 (−10%). We can then conclude
that Eqs. (18), (21), (25), and (28) can be reasonably extended
to the entire visible range for Si, Cu2O, and TiO2, which
seems convenient for designing purposes.

V. CONCLUSIONS

We have obtained explicit expressions that provide ac-
curate approximations to dipole resonances and antireso-
nances in the scattering spectrum of nonabsorbing dielectric
nanospheres with high- and moderate-refractive-index values
in the optical range. These expressions enable us to predict
the occurrence of a dipole resonance with any ordinal number
for a triplet of sphere’s radius R, incident wavelength λ, and
relative refractive index value m without the actual evaluation
of Mie scattering coefficients. Our predictions retrieve previ-
ous results for m � 1 and extend them to a wider range. We
have confirmed their validity for specific dielectric materials
that are widely used in photonic devices. Therefore, we ex-
pect our results to be useful for the designing of dielectric
nanoresonators, particularly for issues such as biosensing
[48], nanoscopy [50], or photonic nanojet lithography [51].
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APPENDIX: DETERMINATION OF mb1, j
1

For x � 1, we expect the solutions of sx�1
1 (x, m) = 0 to

coincide with those of s1(x, m) = 0. However, as can be seen

in Fig. 11, there is still some discrepancy between them for
x = π (i.e., g = 1). In order to ensure both their accuracy and
their closeness, we have defined mb1, j

1 as the zeros of the linear
Taylor expansion of s1(π, m) about m = ( j + 1

2 ), which can
be expressed as

mb1, j
1 =

(
j + 1

2

)(
1 + 1

π3 − 2

[
1 − 3(

j + 1
2

)2

])
. (A1)

This leads to zeros that are slightly greater than ( j + 1
2 ):

mb1,{2,3,4,...}
1 = {2.54482, 3.59111, 4.63216, . . .}. (A2)

By the restriction of this correction to g = 1, we finally arrive
to Eq. (38).
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FIG. 11. Calculated s1(π, m) (solid) and sx�1
1 (π, m) (dashed) as

a function of m. Vertical dashed-dotted lines mark the values of mb1, j
1

from Eq. (A2).
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