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Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces

F. L6pez-Tejeira,"* F. J. Garcia-Vidal,> and L. Martin-Moreno!
1Departanwm‘o de Fisica de la Materia Condensada, Universidad de Zaragoza, ICMA-CSIC, Zaragoza E-50009, Spain
2Departament0 de Fisica Terica de la Materia Condensada, Universidad Autonoma de Madrid, Madrid E-28049, Spain
(Received 29 July 2005; published 31 October 2005)

In this work, the scattering of surface plasmons by a finite periodic array of one-dimensional grooves is
theoretically analyzed by means of a modal expansion technique. We have found that the geometrical param-
eters of the array can be properly tuned to achieve optimal performance of the structure either as a Bragg
reflector or as a converter of surface plasmons into light. In this last case, the emitted light is collimated within

a few degrees cone. Importantly, we also show that a small number of indentations in the array are sufficient

to fully achieve its functional capabilities.
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Surface plasmons (SPs) are well known for their capabili-
ties for concentrating light in sub-wavelength volumes and
guiding light through the surface of a metal.! This has re-
cently raised the prospect of SP-based photonic circuits, with
length scales much smaller than those currently achieved.”™*
In order to reach this goal, it is mandatory to know the scat-
tering properties of SPs by simple surface profiles, as pointed
out by recent experimental studies.>>~ From the theoretical
side, this is still an open problem, even after a few seminal
works based on the Rayleigh expansion'®'? and the Green’s
function dyadic.'*!* Both these methods require the evalua-
tion of sophisticated scattering functions from which physi-
cal insight is not easily inferred.

In this work we present an alternative formalism for cal-
culating the scattering of SPs by indentations perforated on a
thick metal film. For that purpose, we have extended to real
metals the modal expansion technique previously developed
within the perfect conductor approximation (PCA),!>1
therefore incorporating surface plasmon polaritons into the
model. This approach enables us to describe the scattering
properties of an arbitrary set of indentations without any re-
striction over their position or shape. Besides, our method
does not require any adjustable parameter, inasmuch as the
wavelength-dependent dielectric function of the metal £(\) is
previously known. In addition to this, it provides a very com-
pact representation of the electromagnetic (EM) fields and
simple expressions for the scattering magnitudes, which per-
mits us to extract underlying physical mechanisms much
more easily.

Within our theoretical framework, the way of launching
SPs onto a set of indentations resembles the back-side illu-
mination employed in some experimental works.> We con-
sider a single slit flanked by a set of NV indentations placed in
the output surface of an infinite metallic film of thickness A
(see Fig. 1). Eventually, the distance between the slit and
indentations will be taken to be infinity. In this way, the slit
merely plays the role of a theorist’s SP launcher. More pre-
cisely speaking, SPs are taken into account by applying sur-
face impedance boundary conditions'” (SIBC) to the metal/
dielectric interface along the film surface.

In this work, we consider the simplest case of one-
dimensional (1D) subwavelength indentations (grooves). Ad-
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ditionally, we impose that the external illumination be uni-
form along the y axis, so we restrict ourselves to the
scattering of SPs impinging onto the grooves at normal inci-
dence, where only the fundamental mode inside each groove
is relevant. This leads to a set of N+2 equations for the
modal amplitudes of the electric field at the input and output
openings of the slit (Ey, E;)) and the output openings of the N
grooves ({E.}):

(Goo = €)Eg = GyoEy = I,

(Gaa - ea)E;z + 2 Ga,BE[,?_ GUOE()5a() =0. (1)
BF*a

Notice that this set of equations is the same as the one ob-
tained within the PCA.'® Therefore, its physical meaning re-
mains unchanged, although the expressions are slightly dif-
ferent due to the nonzero impedance Z,=&(\)~!/? at the metal
surface: I, takes into account the back-side illumination on
the slit (which must be p polarized in order to excite SPs);
the “self-energy” €, is related to the bouncing back and
forth of the EM fields inside indentation «. For a groove,
€,=—i(1+¢p)/[1-Z,~(1+Z)p,], where ¢,=e* 0Vo(1
-Z)/(1+Z,), being kg=2m/N\ and w, is the depth of the
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FIG. 1. Schematic picture of the system under study: single slit
flanked in the output surface by an arbitrary set of N indentations
located at a long distance from its right side. A p-polarized EM
wave is impinging from the bottom. Parameters {x,,a,,w,} define
the geometry of indentations.
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groove; Go=2i/[e*"(1+2,)?—e~*oh(1-Z)?] represents the
coupling between the two sides of the slit. Finally, G,z is the
coupling between modes, reflecting that mode B emits radia-
tion that can be collected by mode a. More precisely, G,z is
the projection onto the wave fields at the openings of inden-
tations a and B of a scalar Green’s function

i
Glx,z:x' 2 )=~

, 2)
N Vg = K2 + ko Z,

. Nay~l12_ 221,
f+°° el(k\x—x [+ Vky—k lz==z"])

As Z,—0, Eq. (2) transforms into an integral representation
of the Oth-order Hankel function of the first kind,' thus re-
covering the PCA in the low-energy limit of our approach.
Even within the SIBC approximation, we find that the PCA
result is still valid for |x—x'| < \.'® However, the presence of
Z, in Eq. (2) strongly modifies its long-distance behavior. By
means of the saddle-point approximation, we have obtained
an asymptotic expansion of G in the limit where |z—z'[, N
<|x-x'

s

GaS(X,Z;XI,Z,) - _ (k(Z)Zs/kp)ei(kp|x—x’\_kOZS|z—z’|), (3)

with k, satisfying the SP dispersion relation of a flat metal-
dielectric interface within the SIBC, Vkj—k,’==Z,ko. There-
fore, the long distance EM coupling along the surface is due
to SPs, even in the presence of absorption. Comparison with
the exact result in the optical regime shows that the
asymptotic limit is already reached for small distances. For
example, in the case of silver at A=750 nm, we find that
G,,(r,r") differs from G(7,7") by less than 10% for |x—x'|
~2\. It is this knowledge of long-distance EM coupling
being mediated by plasmons that allows us to use the system
in Fig. 1 for the analysis of SP scattering.

Let us then examine the term G E; in Eq. (1). It can be
interpreted as a “slit illumination” impinging on the grooves.
Thus, the equation governing the EM fields at the grooves
becomes

(Gaa_ea)E:y"' E GBQE,Bziw (4)
B#a,0

where 7, «=—GyE} is defined to resemble the back-side illu-

mination I,. The key point is that, according to Eq. (3), I,
corresponds to an SP illumination, modulated by a constant
factor that depends on the metal thickness, the intensity of
back illumination and the width of the slit. This factor is not
relevant for the determination of scattering coefficients and
the whole slit can then be treated as a theoretical artifact.

Once the self-consistent {E/} are obtained, the calculation
of the EM field in all space is straightforward, and therefore
so are both the emittance S (which is the fraction of incom-
ing SP energy radiated into vacuum) and its angular distri-
bution. As the EM coupling between the grooves and a dis-
tant point on the surface is due to SP, we can also obtain the
SP reflection (r) and transmission () amplitudes,
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FIG. 2. (Color online) Calculated R (solid), T (dashed), and S
(dotted) curves of SP scattering by a finite periodic groove array on
a Ag film. Here, a=100 nm, d=600 nm, and w=50 nm. Results in
(a), (b), and (c) correspond to structures with 1, 5, and 10 grooves,
respectively. Panel (d) shows the band structure (solid lines) for the
same parameters as in (a) to (c) and the SP dispersion relation in a
flat air/ Ag interface (dots). Gray strips mark the photonic gaps.

N N
r= 2 et reE! 1=14 D cpe g (5)
a=1 a=1

where ¢, =—ik} \e’a_a(Zs/ k,)sinc(k,a,/2) is a geometrical coef-
ficient associated with each indentation. Note that if absorp-
tion is present, Im[k,]# 0 and the SP reflected and transmit-
ted currents depend on the points (7g,77) at which the EM
are evaluated, reflecting the absorption loss in the flat regions
of the metal surface. This suggests that the scattering coeffi-
cients should be extracted from the EM fields at points close
to the grooves, although in this case it is difficult to separate
the diffractive contribution from the one due to SPs. Never-
theless, provided that the grating lengths considered are
shorter than the SP absorption length, absorption can be ne-
glected. In what follows, we present the results obtained un-
der such assumption for finite periodic arrays of N rectangu-
lar grooves, patterned on a Ag film.

We consider grooves with width a=100 nm and depth w
=50 nm separated by a period d of 600 nm, which are typical
experimental values. Figures 2(a)-2(c) render the calculated
reflectance R=|r|?, transmittance T=[f|>, and emittance S
spectra for increasing values of N. For a single groove (top
panel), T increases with A, while both R and S decrease. This
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FIG. 3. (Color online) Maximum values of R (a) and S (b) as a
function of the number of grooves in the vicinity of k,d=2 for the
same w, d as in Fig. 2 and increasing values of a.

is due to two mechanisms. First, there is a decrease of the
relative size of the groove with respect to N, which manifests
in G,p scaling as (a/\). Second, at longer \s, the SP wave
field is more extended in the air region and therefore less
sensitive to the presence of obstacles at the surface. Panels
2(b) and 2(c) show how the addition of more grooves greatly
modifies the optical response of the system. As N increases,
transmission gaps develop, as well as sharp resonances in
both R and S.

In order to gain insight into the origin of this behavior, it
is helpful to analyze the EM surface modes of an infinite
groove array. This can be readily done by looking for solu-

tions to Eq. (4), imposing both 7,=0 and Bloch’s theorem,
(i.e., El,=E'e" [ being the extended surface state wave
vector at the given wavelength). The band structure (solid
line) for surface modes in a periodic structure with the same
geometrical parameters as in Figs. 2(a)-2(c) is presented in
Fig. 2(d), as well as the dispersion relation of SPs in a flat
air/silver interface (dots). As expected,'® band gaps occur
with a low-\ edge given by kpd:mﬂ' with m=1,2,..., i.e.,
by the folding of the dispersion relation in a flat surface. On
the contrary, the high-\ edge depends on the geometry of the
grooves as it corresponds to a SP standing wave with
maxima at the groove positions. Evidently, spectral regions
of low T in the finite array coincide with gaps in the band
structure. Energy conservation implies a corresponding in-
crease in R+S, but it is not obvious how this increase is
divided between these two channels. However, there is a
simple argument for the existence of reflection maxima. Let
us consider the SP wave fields emitted by two consecutive
grooves in the region of reflection. There is an “optical path”
phase difference of k,d between these waves. Additionally,
there is also a phase difference between emitters that is equal
to k. d in the case of an infinite system. But, as previously
noted, k,d=k,d=mm at the low-wavelength gap edge so the
SP wave fields launched by all grooves interfere construc-
tively. (Notice that they also interfere constructively in the
transmission region, but not with the incident field.) As A is
increased away from this condition, the constructive interfer-
ence is progressively lost, R decreases and, for A within the
gap, S increases. If \ crosses the gap edge, the transmission
channel is open, and S decreases. Therefore, S presents peaks
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FIG. 4. (Color) Contour plots of R (a), T (b), and S (c) versus
both groove depth and wavelength for the same N, a, d as in Fig.
2(c).

at the high-\ edges of the gaps, as can be seen in Fig. 2. In
our opinion, this mechanism can explain the heuristic crite-
rion for optimum mirror efficiency presented in Ref. 6 and
may also be at the root of the strong asymmetry in the posi-
tions of the reflectance peaks reported in Ref. 8.

Figure 3 renders the maximum R and S as a function of
the number of grooves in the vicinity of k,d=2 for the
same w,d parameters as in Fig. 2 and increasing values of a.
Notably, a small number of indentations are sufficient to
achieve either a large in-plane reflection or a high emission
out of the plane. This rapid saturation is also consistent with
Ref. 6. With respect to the groove width, it is clear that it
mainly influences the out-of-plane efficiency of every single
scatterer, being more relevant for the S vs 7T ratio than for
mirror efficiency.

The dependence of the scattering coefficients on groove
depth is depicted in Fig. 4, for N=10, a=100 nm, and d
=600 nm. As can be seen, the maxima of R vary weakly on
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FIG. 5. (Color online) Radial component of the Poynting vector
evaluated in the far field versus angle for an array of grooves with
the same a, d, w, N as in Fig. 2(c). The wavelength of the incident
radiation corresponds to the S maxima in Fig. 2: A=665 nm (solid)
and A=500 nm (dashed). Top insets: FWHM of angular distribution
as a function of N (dots) and 1/N fit (solid lines).

w for most ranges of groove depth. Such a weak dependence
may be relevant for device design, considering that the con-
trol of w is often the most difficult point in groove fabrica-
tion. However, Fig. 4 also shows that for some values of w
the reflection is very small, when a maximum is expected.
Simultaneously, at these groove depths, S=~0 and T= 1. This
occurs close to the condition A\=4w/(2n+1), when the in-
plane electric field at the indentations is very small, due to
destructive interference of the incident field and the field
reflected on the closed end of the groove.
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One of the possible applications of finite arrays of inden-
tations lies in their capability to convert SPs into light.
Therefore, it is worth studying the directionality properties of
the emitted light in the system analyzed throughout this pa-
per. Figure 5 shows the far-field angular distribution of ra-
diation emitted out of plane, evaluated for the two emittance
maxima in Fig. 2(c) (A=665 nm and A\=500 nm) at the low-
energy edges of the gaps labeled, respectively, with m=2 and
m=3. The distribution corresponding to the gap with m=2
(solid curve) is beamed close to the normal. On the contrary,
the one coming from the gap with m=3 is beamed at higher
angles. Notice that, at the condition of maximum R, E,
o (=1)™ 5o the emittance would be normal for even m and
close to tangent for odd m. The insets render the full width at
half maximum (FWHM) of angular distribution peaks for
both curves as a function of the number of grooves. As ex-
pected from the usual grating theory, it scales as 1/N.

To summarize, in this paper we have presented a theoret-
ical framework that can treat the scattering of SPs by a finite
array of indentations. With this formalism, we have studied
the scattering properties of a subwavelength periodic groove
array in the visible and near IR ranges. We have found that,
associated with the low-\ edge of the SP band gap, the array
behaves as a mirror (up to 80% reflectance) whereas at the
high-\ edge, most of the light carried out by the SP can be
converted into collimated light (up to 90%). We have also
shown that this resonant behavior can be achieved with a
small number of indentations (around ten) and it is quite
robust with respect to variations in the groove depth.
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