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c/ Doctor Cerrada 1-3, E-50005, Zaragoza, Spain


candeal@unizar.es
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We analyze various models introduced in social choice to aggregate individual prefer-
ences. We show that on the basis of most of these models there is a system of func-
tional equations such that, in many cases, the origin of impossibility results in a social
choice model is the non-existence of a solution for the corresponding system. Among
the functional equations considered, we pay a particular attention to general means and
associativity, proving that the existence of an associative bivariate mean is equivalent to
the existence of a semilatticial partial order. This key result allows us to explain how the
knowledge of associative bivariate means can be used to solve social choice paradoxes.
In our analysis we deal both with crisp and fuzzy settings.
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1. Introduction


The present paper intends to be a further contribution to the extensive literature


on aggregation of individual preferences.


Individuals in a society are likely to have diverse views and preferences on a


particular matter or issue; how to aggregate them into a reasonable or acceptable


social preference or choice has been the concern of Social choice theory. Tradition-


ally, election (voting, counting and decision based on majority of votes) has been


one of the means by which a democratic society articulated its collective preference.


However, when the individual preferences are expressed as comparisons between the


available alternatives (ordinal preferences), the aggregation process becomes more


complex. In fact, even apparently reasonable criteria that one tries to assign to a


social choice (aggregation) rule prove to be inconsistent collectively.


We will analyze the so-called social choice paradox.


Social choice paradoxes appear when a society is unable to find a rule to ag-


gregate the individual preferences into a collective social preference accomplishing


a mild list of restrictions. An evident example of a common sense restriction is the


respect of unanimity so that if every individual of a society declares that the option


A is better than the option B, then the society as a whole should also declare that


A is better than B.


This general setting was launched in the pioneer work by Arrow.1


Arrow formulated it as an impossibility theorem and proved it using a com-


binatorial approach, showing that under a small set of conditions (known as the


Arrovian model), and for a finite society with at least two individuals, that has


to rank a set of at least three alternatives, there is no way to aggregate the indi-


vidual rankings into a social one accomplishing the previously imposed conditions


of the model. The impact of Arrow’s impossibility result led other researchers in


social choice to look for alternative models to aggregate preferences, in the search


for possibility results (also known as resolutions of the social choice paradox). This


obviously implies that the set of conditions to be imposed to the aggregation rules


should be modified. Nevertheless, in this direction new (and perhaps discouraging)


impossibility results were obtained.2–4


A resolution of the social choice paradox was finally achieved and subsequently


developed in a topological approach introduced by Chichilnisky in a series of papers


published mainly during the 1980s.5–7


In this new topological context it is sometimes (but not always!) possible to get


rid of paradoxical situations. A social choice rule satisfying certain reasonable condi-


tions that are characteristic of the Chichilnisky model and appear as an alternative


to those in the Arrovian model may exist in certain cases.


As a matter of fact, the existence of a social choice rule is strongly conditioned


upon the topological properties of the spaces involved.


Not only the topological approach introduced by Chichilnisky could lead to


possibility results. Indeed, a new algebraical approach appeared in the 1990’s and,
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in a somewhat analog way to the topological approach, social aggregation rules


may appear here in certain cases, now depending on the algebraical structure of the


space of preferences.8


Although this new approach can be studied independently, it also furnishes


further information on the topological one: The main reason is that the usual topo-


logical models issued by Chichilnisky have, associated in a natural way, a family of


algebraical models based on homotopy groups of the space of preferences, so that


these associated algebraical models actually control the topological model, furnish-


ing full information about the existence or not of a social choice rule in the former


(topological) model.8,9


These three main approaches (combinatorial, topological and algebraical) were


all introduced in the crisp (i.e. non-fuzzy) setting in which the sets of preferences,


alternatives and aggregation maps are crisp.


Still in the crisp setting, other different contexts that could also lead to some


possibility results appear through generalizations of the aforementioned approaches


(combinatorial, topological or algebraical). Among them, the extensions of the


Arrow or Chichilnisky models to infinite populations play an important role.10–12


In a sense, this context and the topological or algebraical models share the ideas


of imposing new conditions to the preferences involved, as well as working on some


sets that are endowed with some extra structure (e.g.: topological or algebraical).


Somewhat related to this last direction of considering restrictions due to extra


structure, a second main setting to aggregate preferences has been studied in the


literature. This is the fuzzy setting, where possibility results may actually appear


on various fuzzy contexts or aggregation models, that capture the idea of a society


where each individual as well as the whole society express its preferences in a


vague, imprecise or uncertain manner. Thus, for instance, we may suppose that the


individual preferences are framed by means of some kind of fuzzy binary relations


instead of the total preorders usually arising in the crisp models. Also, we may


consider that the social aggregation rules are fuzzy maps. Among many others, there


are a large variety of papers where those fuzzy approaches have been considered


in the literature.13–18 Some of these approaches are inspired by some models that


are of common use in the crisp setting, as the Arrovian one. Having these (crisp)


models in mind, several axiomatic approaches were built in order to understand


rational decision malting in a fuzzy environment.13,15


In the present paper we shall pay attention to some aspects of recent models


introduced in the literature to achieve some possibility qresults. First we shall review


the crisp setting, and then we will pay attention to the fuzzy setting.


In the search of social rules coming from models arising in both settings (crisp


and fuzzy), some functional equations appear in a natural way. As we shall comment


later on, the possibility or impossibility results that could appear associated to


various social choice models are directly related to the solvability of some system


of functional equations.
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Intending to furnish a panoramical review about the mathematical origin of so-


cial paradoxes, mainly due to the lack of solutions of some system of equations that


characterizes a social choice model, in the present work we analyze those functional


equations, paying a particular attention to general means and the functional equa-


tion of associativity, showing that the knowledge of suitable associative bivariate


means solves the social choice paradox in a wide variety of models, both in the crisp


and fuzzy settings.


The structure of the paper goes as follows: In the section of notation and pre-


liminaries (Sec. 2) we shall review the main features of the most important models


(combinatorial, topological, and algebraical) arising in the crisp setting. In Sec. 3


we shall study systems of functional equations that are directly related to the mod-


els previously introduced in Sec. 2. Among these systems of functional equations,


we will pay an special attention to general means (Sec. 4) and associative maps


(Sec. 5). In section 6 we shall consider aggregation models introduced in the fuzzy


setting. We will also analyze the associated systems of functional equations, and


compare the results with the ones obtained in Secs. 3 to 5 for the crisp setting.


Further comments about other functional equations arising in social choice models


(Sec. 7) and a final section of conclusions (Sec. 8) will close the paper.


2. Notation and Preliminaries


2.1. Combinatorial models in the crisp setting


Let Y be a nonempty set of alternatives on which the individuals of a society


may define their preferences. In the main combinatorial models arising in the crisp


setting we suppose that the society is finite, consisting of N ≥ 2 individuals.1,3,4,10


We shall understand here that each individual preference is a total order on Y .


Let X be the set of all the possible preferences that could be defined on Y (e.g.: if


Y is finite, X = Π(Y ), the set of all the possible permutations of Y ).


A profile of preferences is an element (x1, x2, . . . , xN ) ∈ XN such that each xi


represents an element of X that could be identified with the individual preference


of the agent i (where i ∈ {1, . . . , N}). A social aggregation N -rule is a map FN :


XN −→ X .


The most classical combinatorial model is the well known Arrovian model, issued


in the 1950’s, whose restrictions are the following ones:


(C1) Whole domain: The N -rule FN is defined on the whole set XN .


(C2) Rank restriction: The N -rule FN takes values on X . (In other words, for every


profile (x1, x2, . . . , xN ) ∈ XN , FN (x1, x2, . . . , xN ) ∈ X is a total order on Y ).


(C3) Unanimity or Pareto efficiency: If an alternative a ∈ Y is ranked above


another alternative b ∈ Y for all the individual preferences of a profile


(x1, x2, . . . , xN ) ∈ XN , then the social preference FN (x1, x2, . . . , xN ) ∈


X also ranks a above b. Notice that, in particular, this implies that


FN (x, x, . . . , x) = x for every x ∈ X).
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(C4) Non-dictatorship: The N -rule FN is not a projection over one of its compo-


nents, that is, there is no i ∈ {1, . . . , N} such that FN (x1, . . . , xN ) = xi,


for every profile (x1, x2, . . . , xN ) ∈ XN . (This means, roughly speaking, that


there is no individual i whose preferences always prevail).


(C5) Independence of irrelevant alternatives: For two preference profiles


(x1, x2, . . . , xN ) and (y1, y2, . . . , yN ) ∈ XN such that for all individuals


i ∈ {1, . . . , N} the alternatives a and b ∈ Y have the same order in xi


and yi, it holds that the alternatives a and b also have the same order in


FN (x1, x2, . . . , xN ) as in FN (y1, y2, . . . , yN ).


The Arrow impossibility theorem says now that if Y is finite with at least three


alternatives, then the restrictions that constitute the model are incompatible.1


Other classical models in the combinatorial approach were introduced by


Gibbard and Satterthwaite in the 1970’s, and also lead to impossibility results.3,4


2.2. Topological models the crisp setting


As mentioned in the introduction, in the 1980’s Chichilnisky and others considered


alternative models using a topological approach also in the crisp setting.5–7


Of course, the main underlying idea when launching these new alternative mod-


els was the search for possibility results in social choice.


But there is also a set of important restrictive facts that arise in the Arrovian


model that were taken into account in order to build a not-so-restrictive alternative


model, namely:


• The Arrovian model considers a finite set of alternatives.


• In the Arrovian model each individual has to define her preferences as a


ranking on the set of alternatives.


• In the Arrovian model, each individual ranking must be a total order.


Remark 1. Despite it could perhaps seem a bit unfair towards the Arrovian view


to avoid his assumption of a total order for each one of the individual preferences


as well as for the aggregated preference, we should think that after the launching of


the main Arrovian model and its impossibility result, a search for possibility results


is in order in this theory, in the framework of Social Choice. Actually, the Arrovian


impossibility theorem states that if Y is finite with at least three alternatives, then


the concurrence of the restrictions C1, C2, C3 and C5 that constitute the model,


provokes the negation of condition C4, so that the aggregation preference becomes


“dictatorial”.


In the analysis of alternative models, there are also typical situations in Social


Choice in which a kind of sequential or serial dictatorship appears. Basically, they


are associated to Arrovian-like models where the preferences are total preorders in-


stead of total orders, thus allowing ties.19–22 However, the apparition of the so-called


serial dictatorship is also considered an impossibility result. This fact contributed
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to additional search with Arrovian-like models of a different kind, namely models


where an infinite number of agents or decision-makers is involved.10,23–25


At this point it is of particular importance to say that some of the last Arrovian-


like models on which an infinite number of agents appear, use topological tools based


on concepts like ultrafilters or ultraproducts. In addition, some of them leads to


possibility results (in some sense) due to the absence of a (single) dictator, in spite


of the new concept of an invisible dictator, that is introduced in these models. (For


further details, consult the references, and in particular the key book by Kirman


and Sonderman quoted there10).


Thus, these new Arrovian-like models perhaps suggested to other authors the


use of topology in order to build alternative models to avoid social choice paradoxes.


Moreover, although the original Arrovian model dealt only with total orders, the


subsequent models also suggested not to be so restrictive, so allowing the consider-


ation of other kinds of orderings as total preorders.


In a certain sense, perhaps the apparition of the Chichilnisky topological models


could be (so-to-say) expected or predictible at this stage, and some Arrovian-like


models with infinite agents could be considered in this literature as a bridge between


the original Arrovian model and the new setting launched by Chichilnisky.


Unlike the (original) Arrovian model, in the Chichilnisky topological model we


could be considering infinite sets of alternatives, the individual rankings of prefer-


ences could fail to be total orders, being instead any other possible kind of orderings,


perhaps allowing ties. Moreover, it is not strictly necessary to know the whole rank-


ing that each individual defines. Indeed, in some Chichilnisky model it is enough to


work with the best element for each individual, disregarding the individual ranking.


Let us explain in detail these features: the set X may or may not be interpreted


as a set of preferences defined as total orders on a set of alternatives. Instead, it


could be interpreted as a set of individual orderings that may fail to be total orders.


Sometimes it could also be interpreted as a set of final choices that each individual


makes by selecting her best element.


Obviously, all this seems to be too ambiguous at first glance: What is really the


set X?


The set X in a Chichilnisky model is just a topological space. It is irrelevant if


each element x ∈ X is interpreted as an individual preference defined through a


total order on a set of alternatives, or if it is a different kind of ordering on the


set of alternatives, or even if it is just the best alternative that an individual has


selected as her best option.


All this will depend on the particular context.


Perhaps the most remarkable feature to be pointed out here is that Chichilnisky


models furnish a new theoretical and totally abstract setting on which, depending


on the context, either preference orderings or best individual alternatives, are un-


derstood as points of a topological space.
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Let us see an example, that involves best choices instead of total orders on a set


of alternatives:


<<A man is lost in the desert, and needs water. He does not know where the


water is but has been told that there is an oasis not far from his position. He decides


to walk always in the same direction in the hope of finally finding the oasis to survive.


Thus, the set X of possible best choices here can be interpreted as the points of a


circle that the magnetic needle of a compass could indicate>>.


That is, in this example we may identify X with the unit circle S1 = {(x, y) ∈


R2 : x2 + y2 = 1}, endowed with the restriction to S1 of usual Euclidean topology


of the plane R2.


In the topological Chichilnisky model X is a nonempty set endowed with a


topology τ , and a social N -rule is a map FN : XN → X satisfying the following


restrictions:7


(T1) Continuity: The N -rule FN : XN → X must be continuous (where XN is


endowed with the product topology).


(T2) Unanimity: For every x ∈ X it holds that FN (x, . . . , x) = x.


(T3) Neutrality or respect of anonimity: FN (xσ(1), . . . , xσ(N)) = FN (x1, . . . , xN ) for


every rearrangement σ of the set {1, . . . , N} and every (x1, x2, . . . , xN ) ∈ XN .


It is important to point out here that the set X may now be infinite.


2.3. Algebraical models in the crisp setting


As in the topological case, the algebraical models are totally abstract and were


introduced to get rid of social choice paradoxes. The former papers in this approach


appeared in the 1990’s.8,9,26 By the way, the consideration of preferences defined on


sets endowed with some algebraical structure is typical in Utility Theory.27–30 (See


also Secs. 4.5 and 4.6 in the classical book by Bridges and Mehta on representation


of preferences31).


Again, in these new algebraical models the set X may be interpreted in many


ways, depending on the context.


Now X is also a nonempty set, endowed with a binary operation +̄. Usually this


binary operation +̄ is asked to accomplish certain conditions (i.e.: associativity or


commutativity), so that (X, +̄) could have some typical algebraical structure (e.g.:


semigroup, monoid or group).


Once more it is important to point out that X may possibly be infinite.


Again an example of this situation could beX = S1, but now identifying the unit


circle to the set of complex numbers of modulus 1, that is S1 = {z ∈ C : |z| = 1},


that endowed with the usual multiplication of complex numbers (·) becomes a


group.


Let us see another easier example in this direction:


<<A man usually goes to the market twice a week. One day, he decides to buy


a basket (x1, x2, . . . , xk) of k goods, and the next day in the same week he buys a
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different basket (y1, y2, . . . , yk). The next week, however, he has not enough time to


go twice to the market, so that he decides to buy at once the basket (z1, z2, . . . , zk),


where zi = xi + yi(i ∈ {1, . . . , k}). >>


In this latter example, X can be identified to Rk, and endowed with the coor-


dinatewise sum also becomes a group.


In these algebraical models, a social N -rule is a map FN : XN → X satisfying


the following restrictions:


(A1) Homomorphism or respect of the algebraical opera-


tion: FN (x1+̄y1, . . . , xN +̄yN ) = FN (x1, . . . , xN )+̄FN (y1, . . . , yN ), for every


(x1, . . . , xN ) and (y1, . . . , yN ) ∈ XN .


(A2) Unanimity.


(A3) Neutrality.


3. Functional Equations Related to Social Choice: The Crisp Setting


Looking at the latter models introduced in the crisp setting, we may notice that


in most cases the search for aggregation rules leads in a natural way to functional


equations.


3.1. From combinatorial to topological and algebraical models.


A motivation based on functional equations


We know that the Arrovian model leads to the Arrow’s impossibility theorem.1 In


addition, other combinatorial models also lead to social choice paradoxes.3,4


Thus, it is important to look for alternative approaches in order to solve social


choice paradoxes (i.e. generating possibility results). As mentioned in the Introduc-


tion, this is the case of several topological and algebraical models.


At this stage, it is important to point out that the introduction in the literature


of those alternative models (topological and algebraical) may be motivated in terms


of functional equations. As a matter of fact, the complexity of a good notation


to express the conditions involved in the Arrovian model by means of functional


equations, could lead us to consider alternative combinatorial models.


Thus, we could consider a (still combinatorial) model consisting only of the


following conditions on an abstract nonempty set X , to which we could give various


interpretations, depending on the context, just as in the topological and algebraical


models introduced above.


(i) Whole domain


(ii) Rank restriction


(iii) Unanimity


(iv) Neutrality.


Consequently, we will look for maps FN : XN → X that solve simultaneously


both the functional equations of unanimity and neutrality. This leads to the key
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concept of a general N -mean that we introduce in the next definition.


Definition 1. Let X be a nonempty set. Let N ≥ 2, N ∈ N. Ageneral N -mean


is a map FN : XN → X that simultaneously satisfies the functional equations of


unanimity and neutrality. For N = 2, general 2-means are also called bivariate


means.


This concept will be studied in Sec. 4.


Obviously, the next step is just adding some extra conditions to a general


N -mean. The extra conditions should be related to the additional structure on


the set X involved. Thus, when X is endowed with a topology τ and we look for a


continuous general N -mean FN : XN → X we reach the topological Chichilnisky


model. Similarly, if X is endowed with a binary operation +̄ and we look for a


general N -mean that is also an homomorphism, we get an algebraical model.


3.2. Functional equations in the topological models


Definition 2. Given a topological space (i.e.: a nonempty set X endowed with


a topology τ), a (topological) social aggregation N -rule is also called a topological


N -mean, that is, a continuous map F : XN → X that solves simultaneously both


involved functional equations of:


1. Unanimity: FN (x, . . . , x) = x, for every x ∈ X .


2. Neutrality: FN (xσ(1), . . . , xσ(N)) = FN (x1, . . . , xN ) for every rearrangement σ


of the set {1, . . . , N} and every (x1, x2, . . . , xN ) ∈ XN .


At this point we may observe that any general N -mean on a nonempty set X


can still be considered as a topological N -mean just endowing X with the discrete


topology.


The question of existence of topological N -means was already analyzed and


solved in several contexts that are based on old problems arising in algebraical


topology, where the possibility of defining a general mean furnishes important in-


formation about the intrinsic topological structure of the space considered.32


The merit of recent research on the mathematical theory of social choice is real-


izing that those purely abstract results arising in Topology could indeed be applied


or reinterpreted to prove deep results on the aggregation of individual preferences


or choices, leading to possibility results (i.e., avoiding social choice paradoxes) in


some particular cases.


In order to quote now some of the main important results in this direction, let


us introduce some definitions.


Definition 3. A cellular complex (or CW-complex) is a topological space that


can be constructed inductively by adding n-cells. An n-cell is homeomorphic to the


n-dimensional unit open ball. Cellular complexes include a wide class of spaces,


namely Euclidean spaces, all manifolds and polyhedra.
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A cellular complex is said to be parafinite if, for every n ∈ N, there are only a


finite number of n-cells. (Examples are spheres, tori, balls, and cubes). Parafinite


cellular complexes may be infinite dimensional, as they may contain an infinite


number of cells, although they may contain only a finite number of cells in each


dimension.


Every parafinite cellular complex can be regarded as a topological subset of R∞,


the countably infinite-dimensional Euclidean space.


Definition 4. A topogical space (X, τ) is contractible if it is continuously de-


formable into one of its points. (For further details, see pp 61-97 of the book by


Rohlin and Fuchs mentioned in the bibliography.33)


That is, if (X, τ) is contractible there exists a continuous map H : X× [0, 1] −→


X such that H(x, 0) = x;H(x, 1) = x0, for every x ∈ X , with x0 ∈ X fixed.33


The following important result was essentially proved by Aumann.32 It was


reobtained and adapted to the social choice framework by Chichilnisky:7


Theorem 1. Let (X, τ) be a connected parafinite cellular complex. Then there ex-


ists a topological N -mean FN : XN −→ X for every N ≥ 2, N ∈ N if and only if


the space (X, τ) is contractible.


(In other words, when (X, τ) is a connected parafinite cellular space, the


Chichilnisky topological model leads to a possibility result for every N ≥ 2, N ∈ N if


and only if (X, τ) is contractible. Equivalently, it leads to a social choice paradox or


impossibility result for some N ≥ 2, N ∈ N if and only if (X, τ) is not contractible).


3.3. Functional equations in the algebraical models


Definition 5. Let X be a nonempty set and +̄ a binary operation defined on X .


An (algebraical) social aggregation rule is also called an algebraical N -mean, that


is, a map F : XN → X that solves simultaneously the functional equations of:


1. Unanimity: FN (x, . . . , x) = x, for every x ∈ X .


2. Neutrality: FN (xσ(1), . . . , xσ(N)) = FN (x1, . . . , xN ) for every rearrangement σ


of the set {1, . . . , N} and every (x1, x2, . . . , xN ) ∈ XN .


3. Homomorphism: It holds that FN (x1, . . . , xN ) +̄ FN (y1, . . . , yN ) =


FN (x1+̄y1, . . . , xN +̄yN ), for every (x1, . . . , xN ) and (y1, . . . , yN ) ∈ XN .


Remark 2. When a set X is endowed with both a topology τ and a bi-


nary operation +̄, an N -rule could be, simultaneously, a topological and alge-


braical N -mean. An obvious example is the arithmetic mean FN (a1, . . . , aN ) =
a1+...+an


n
((a1, . . . , aN ) ∈ RN ), where the real line R is endowed with the usual


addition + and the Euclidean topology.


Let us see now which is the situation concerning the existence of algebraical


N -means. As in the case of topological N -means, it will strongly depend on the


additional (now algebraical ) structure involved.
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We shall start with the case in which the considered space is a group. The


reason for paying a particular attention to groups, leaving apart their own interest


by themselves, is also the connection between the existence of topological N -means


on connected topological spaces and the existence of algebraical N -means on their


homotopy groups. (See Subsec. 3.4 below).


Definition 6. Let (G, +̄) be a group. An element g ∈ G is said to be nilpotent


or a torsion element if there exists some N ≥ 2, N ∈ N such that N · g = e and


g 6= e, where N · g = g+̄ . . . (N−times) . . . +̄g and e denotes the unit element of G


with respect to the group operation +̄. The group (G, +̄) is said to be abelian if


x+̄y = y+̄x for every x, y ∈ X . It is said to be torsion free if for every g ∈ G, g is


not a nilpotent element.


The group (G, +̄) is said to be divisible if for every N ≥ 2, N ∈ N, and every


g ∈ G there exists an element h ∈ G (that may or may not be unique) such that


N · h = g. If given g ∈ G there exists a unique h ∈ G such that N · h = g, we shall


also use the notation h = g
N
.


Lemma 1. Let (G, +̄) be a group. Let N ≥ 2, N ∈ N. Suppose that there exists an


algebraical N -mean FN : GN → G. Then (G, +̄) is abelian and for each g ∈ G there


exists a unique h ∈ G such that N · h = g. Moreover, the N -mean FN is unique,


and it is defined as the convex mean:


FN (g1, . . . , gN) =
g1+̄ . . . +̄gN


N
, (g1, . . . , gN ∈ G).


Proof. This is already known. (See Theorem 1 in the key reference.26 Complete


with some subsequent results8).


Theorem 2. Let (G, +̄) be a group. Then the following statements are equivalent:


(i) For every N ≥ 2, N ∈ N there exists a unique algebraical N -mean on G.


(ii) The group (G, +̄) is abelian, torsion free and divisible.


(iii) The group (G, +̄) is a vector space over the scalar field Q of rational numbers.


(iv) The group (G, +̄) is isomorphic to a direct sum of copies of the additive group


of rational numbers (Q,+).


Moreover for each N ≥ 2, N ∈ N, the unique algebraical N -mean is given by the


convex mean FN (g1, . . . , gN ) = g1+̄...+̄gN
N


, (g1, . . . , gN ∈ G).


(In particular, if (G, +̄) is a group the algebraical model leads to a possibility


result for every N ≥ 2, N ∈ N if and only if (G, +̄) is abelian, torsion free and


divisible).


Proof. This is well-known. (See p. 10 in the classical book by Kaplansky.34 Com-


plete with other results on algebraical aggregation8).


Although the interest of algebraical groups in the social choice framework is


undeniable, in our opinion there are many contexts in which the structure of a
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group is too restrictive. Instead, the use of a semigroup (i.e.: a nonempty set X


endowed with an associative binary operation +̄) seems to be much more adequate.


A very important class of structures that can be considered as semigroups in a


natural way is that of totally ordered sets. Indeed, if X is a nonempty set endowed


with a total order � (i.e.: � is a reflexive, antisymmetric, transitive and total


binary relation defined on X), the set X becomes a semigroup through the latticial


operation ∨ given by x ∨ y = max{x, y} (x, y ∈ X), where the maximum is taken


with respect to the total order � defined on X .


Indeed, the class of semilattices (instead of, just, totally ordered sets, that is


more restrictive) can also be considered as a subclass of the class of semigroups.


Definition 7. Let X be a nonempty set, and � a partial order (i.e.: a reflexive,


antisymmetric and transitive binary relation) defined on X . Then the pair (X,�) is


said to be a lattice if for every pair of elements x, y ∈ X there exist both a greatest


lower bound z ∈ X and a lowest upper bound t ∈ X with respect to �. That is,


for every a ∈ X such that a � x and a � y it holds that a � z, and also for every


b ∈ X such that x � b and y � b it holds that t � b. The greatest lower bound of x


and y is called meet and it is denoted by x ∧ y. The lowest upper bound of x and


y is called join and it is denoted by x∨ y. (For more details on Lattice Theory, the


classical book by Birkhoff is a suitable reference35).


Definition 8. Let X be a nonempty set, and � a partial order defined on X . Then


the pair (X,�) is said to be a semilattice if for every pair of elements x, y ∈ X there


exists a lowest upper bound t ∈ X , that we shall denote x ∨ y.


Remark 3. If (X,�) is a lattice, then for every N ≥ 2, N ∈ N, the map FN :


(X,∧)N −→ (X,∧) defined by FN (x1, . . . xN ) = x1∧x2∧. . .∧xN , (x1, x2, . . . , xn) ∈


XN is plainly an algebraical N -mean for the semigroup structure (X,∧). Simi-


larly, if (X,�) is a semilattice, the map GN : (X,∨)N −→ (X,∨) defined by


GN (x1, . . . xN ) = x1∨x2∨ . . .∨xN , (x1, x2, . . . , xn) ∈ XN is an algebraical N -mean


for the semigroup structure (X,∨).


3.4. Algebraical models controlling topological models


There is a suggestive relationship between topological and algebraical models.


In some way, algebraical models control topological models. Let us see why: Let


(X, τ) be a connected Hausdorff topological space. Notice that a continuous map


FN : XN → X immediately induces group homomorphisms (φr)N : πr(X
N) →


πr(X)(r ∈ N) on the homotopy groups of the spaces XN and X . (See p. 361 in


the reference33). But πr(X
N ) is isomorphic to (πr(X))N . From the functoriality of


those correspondences mapping topological spaces into their homotopy groups, it


is straightforward to see that if FN is unanimous and neutral, the same happens to


(φr)N . Consequently, we obtain the following key result:8
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Proposition 1. The existence of a topological N -mean on a connected Hausdorff


topological space immediately induces the existence of algebraical N -means on each


of its homotopy groups.


4. Functional Equations Related to Aggregation Rules: The Means


In the general definition of an N -mean, topology and algebra play no role (a priori).


It is crucial to analyze this general case (without topological or algebraical


restrictions), looking for solutions of the simultaneous equations that define a general


N -mean.


Obviously, if we have at hand a list of possible solutions of such functional


equations, in the topological models we will only need to select the continuous


ones among them, whereas in the algebraical models we should select those general


N -means that are also algebraical homomorphisms.


Moreover, we will realize which are the reasons for the non existence of a topo-


logical or algebraical N -mean, observing that the lack of solutions is usually related


to the extra (topological or algebraical) structure involved, because of the the fol-


lowing key result.


Theorem 3. Let X be a nonempty set. Then for every N ≥ 2, N ∈ N there exists


a general N -mean FN : XN → X.


Proof. Using if necessary the well-ordering axiom of Set Theory, we may assume


that X is endowed with a total order, say �. It is clear that the map FN : XN → X


defined by FN (x1, . . . , xN ) = max{x1, . . . xN} for every (x1, . . . , xN ) ∈ XN , where


the maximum is taken with respect to the given total order �, is indeed a general


N -mean.


The study of general N -means that accomplish additional properties can be


used in the topological or algebraical social choice frameworks, in the search for


suitable aggregation rules. As a matter of fact, the functional equations that define


a general N -mean have been studied in several other contexts.18,36–38


5. Functional Equations Related to Aggregation Rules: Associativity


5.1. Associative maps


Definition 9. Let X be a nonempty set. A map F : X2 → X is said to be


associative if F (F (x, y), z) = F (x, F (y, z)) for every x, y, z ∈ X .


We may immediately observe that an associative map F endows X with an


algebraic structure of semigroup (X, +̄) where +̄ is the binary operation defined by


x+̄y = F (x, y)(x, y ∈ X).
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(In other words, the solutions of the functional equation of associativity are


exactly the binary operations that define on X a structure of a semigroup).


Remark 4. Associative maps can always be defined on any nonempty set X . An


obvious example is the constant map F : X2 → X given by F (x, y) = a for every


x, y ∈ X where a is an element of X fixed a priori.


Another easy example is the map F : X2 → X given by F (x, y) = max{x, y}


for every x, y ∈ X , where the maximum is taken with respect to a total order �


defined on X , as in Theorem 3 above.


A third clear example is a projection map, as F (x, y) = x for every x, y ∈ X


(or, similarly F (x, y) = y for every x, y ∈ X).


(For a further account on the study of the associativity equation and its gen-


eralizations, as well as a large variety of applications in different contexts, consult


the seminal and normative work made by János Aczél39–41).


5.2. A motivation coming from social choice


As mentioned in the introduction, the typical problem in social choice is the con-


struction of a method to aggregate the preferences of no matter which (finite) num-


ber of agents. We should observe here that, even when social aggregation N -rules


are available for every N ≥ 2, N ∈ N, it could happen that there is no relationship


between, say, the existing N -rule and the existing M -rule if M 6= N . This fact could


carry some extra difficulties:


<<Suppose that in a poll a finite number of persons have expressed their pref-


erences. Once the scrutiny starts, it is desirable to have an algorithm that, grad-


ually, furnishes the social preference that results from the aggregation of the first


2, 3, 4, . . . , N ballots. Of course, it would be interesting here to have an algorithm


that uses the aggregated social rule of the first K individual ballots, jointly with


the (K + 1)-th individual one, to compute the aggregated social preference of such


K+1 individuals, without re-starting all the calculations each time that a new vote


is scrutinized.>>


The underlying mathematical problem is the following:


Is it possible to modify a bivariate mean to get an N -mean for any N > 2, N ∈


N?


This question is very important, because it is related to a general question


studied and analyzed since long, namely the convenience or not of supporting social


choice only on binary comparisons or operations.42 Observe that if the question


introduced above concerning N -means has a positive answer, the aggregation of


rules for any number of agents will be based only on the aggregations made for two


agents, or binary aggregation.


Sometimes the aforementioned mathematical problem has a positive solution.


For instance, this would happen if an associative bivariate mean exists.
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5.3. Associative bivariate means


As a consequence of Remark 4, we can say that the solutions of the functional


equation of associativity only deserve interest if some other additional properties or


restrictions are involved. This study of special solutions of the associativity equa-


tions in various different contexts is a common item in this literature.43–46


A key particular case to be considered in this Subsec. 5.3 concerns solutions of


the associativity equation that are bivariate means as well, since they provoke the


existence of N -means for every N ≥ 2, N ∈ N. These are called associative bivariate


means. An associative bivariate mean F2 : X2 → X on a nonempty set X furnishes


X with a semigroup operation +̄ (with x+̄y = F2(x, y), x, y ∈ X) satisfying the


following conditions:


(i) Associativity: (x+̄y)+̄z = x+̄(y+̄z) (x, y, z ∈ X).


(ii) Commutativity: x+̄y = y+̄x (x, y ∈ X).


(iii) Idempotence: x+̄x = x (x ∈ X).


Observe that commutativity reflects the neutrality of F2, whereas idempotence


reflects its unanimity.


Remark 5. Given a nonempty set X , a bivariate mean defined on X may fail to


be associative, in general. An example is the convex bivariate mean on the real line


R, given by F2(x, y) = x+y
2 ((x, y) ∈ R2). Notice that F2(F2(1, 0), 0) = 1


4 6= 1
2 =


F2(1, F2(0, 0)).


The following straightforward result is now in order.


Proposition 2. Let X be a nonempty set, and F : X2 → X an associative bivari-


ate mean defined on X. Given N > 2, N ∈ N and x1, x2, . . . , xN ∈ X, define recur-


rently: F3(x1, x2, x3) = F (F (x1, x2), x3) and, in general, FK+1(x1, x2, . . . , xK+1) =


F (FK(x1, x2, . . . , xK), xK+1). Then the map FN : XN → X is an N -mean on X.


Next result reinforces Remark 4 as well as the particular case of Theorem 3 for


N = 2.


Proposition 3. Let X be a nonempty set. Then there exists an associative bivari-


ate mean F : X2 → X.


Proof. There is no loss of generality in assumming that X is endowed with an


ordering � such that (X,�) is a semilattice. (If necessary we could use the well


ordering axiom of Set Theory in order to consider X endowed with a well ordering,


that is a particular case of total order, hence it defines a lattice. Anyway, without


making use of that axiom, we can consider the following trivial construction: Fix


a ∈ X and define � by declaring only that x � x and x � a for every x ∈ X). Let


∨ denote the corresponding join operation. Then the map F : X2 → X given by


F (x, y) = x ∨ y (x, y ∈ X) is an associative bivariate mean.
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The kind of associative bivariate mean used in the proof of Proposition 3 is


actually universal as next Theorem 4 shows.


The key theorem


Theorem 4. Let X be a nonempty set. Let F : X2 → X be an associative bivariate


mean defined on X. Then there exists a partial order � defined on X such that


(X,�) is a semilattice and F (x, y) = x ∨ y (x, y ∈ X), where ∨ stands for the join


operation on (X,�).


Proof. Define � on X as follows: x � y ⇐⇒ F (x, y) = y (x, y ∈ X). The binary


relation � is reflexive by the unanimity property of F . It is antisymmetric, due to


the commutativity of F . Let us see that � is also transitive: If x � y and y � z,


we have that F (x, y) = y and F (y, z) = z. Thus, by associativity of F it follows


that F (x, z) = F (x, F (y, z)) = F (F (x, y), z) = F (y, z) = z. Therefore x � z. Let


us see now that F (x, y) is the lowest upper bound of x and y with respect to �,


so that (X,�) becomes a semilattice: Indeed, x � F (x, y) because F (x, F (x, y)) =


F (F (x, x), y) = F (x, y). Similarly, y � F (x, y) because F (y, F (x, y)) =F(F(x,y),y)


= = F(x, F(y,y)) = F(x,y). Finally, if x � a and y � a for some a ∈ X , we have that


F (x, a) = a = F (y, a). Hence, by associativity of F it follows that F (F (x, y), a) =


F (x, F (y, a)) = F (x, a) = a. Therefore F (x, y) � a. Consequently F (x, y) = x ∨


y (x, y ∈ X) and we are done.


5.4. Theoretical consequences of the characterization of


associative bivariate means


The results in the previous Subsec. 5.3 carry important theoretical consequences


in topological and algebraical contexts. Proposition 2 states that an associative


bivariate mean induces general N -means for every N ≥ 2, N ∈ N. Moreover, an


associative bivariate mean can be interpreted through Proposition 3 and Theorem 4


as the join operation of a semilatticial partial order defined on X .


Definition 10. Let (X, τ) be a topological space. Let � be a semilatticial partial


order defined on X . Let ∨ denote the corresponding join operation. The partial


order � is said to be τ-continuous if the associated bivariate mean F : X2 → X


defined by F (x, y) = x ∨ y(x, y ∈ X) is continuous (considering on X2 the product


topology τ × τ and on X the given topology τ).


Theorem 5. Let (X, τ) be a non-contractible connected parafinite cellular com-


plex. Then, any semilatticial partial order � defined on X is τ-discontinuous.


Proof. A semilatticial partial order � can always be defined on X , by Proposition


3. However, by Proposition 2, if � is τ -continuous then there exists a topological


N -mean on (X, τ), for every N ≥ 2, N ∈ N. This fact contradicts Theorem 1, so


that � must be a fortiori τ -discontinuous.
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A similar result appears in the algebraical context.


Definition 11. Let (G, +̄) be a group. Let � be a semilatticial partial order de-


fined on X . Let ∨ denote the corresponding join operation. The partial order �


is said to be +̄-compatible if (g1+̄g2) ∨ (g3+̄g4) = (g1 ∨ g3)+̄(g2 ∨ g4) for every


g1, g2, g3, g4 ∈ G.


Theorem 6. Let (G, +̄) be a group. If there exists a +̄-compatible semilatticial


partial order � defined on G , then (G, +̄) is abelian, torsion free and divisible.


Proof. It is an straightforward consequence of Proposition 2, Lemma 1 and


Theorem 2.


6. Functional Equations Related to Aggregation Rules: The Fuzzy


Setting


In several contexts arising in social choice it is usual to consider a fuzzy setting to


deal with preferences and aggregation rules. In this section we shall analyze some


functional equations that correspond to this fuzzy setting.


First we recall a basic definition.


Definition 12. Let U be a nonempty set (henceforward called universe ). Let


(L,�) be a lattice that has a greatest element 1̄ and a smallest element 0̄. Then, a


fuzzy set is a function (usually called the membership function) A : U −→ L. The


support of A is the set Supp(A) = {x ∈ U : A(x) 6= 0̄}, and the kernel of the fuzzy


set A is the set KerA = {x ∈ U : A(x) = 1̄}. A fuzzy set A is said to be normal if


it has nonempty kernel.


6.1. Fuzzy aggregation of preferences


There are many possible fuzzy approaches to aggregate preferences.


Among them, we shall consider the following one:


Given a nonempty set of alternatives U , the preferences of each individual of


a (finite) society are represented by a fuzzy set A : U −→ L, where (L,�) is the


corresponding lattice, in a way that the kernel KerA represents the elements that


for such individual are the most preferred, and the membership function A gives


the idea of a ranking or degree of membership of the elements of the universe U to


the fuzzy set of preferred elements of the given individual.


Two examples that correspond to this approach are the following:


1. A set U of actors have made a casting to take part in a movie. The examiner


qualifies each of them with a linguistic mark as P = “poor”, G = “good” or


E =“excellent”. The set L = {P,G,E} is totally ordered in the natural way.


2. The individuals of the set U of employees of a firm are classified by the different


tasks that each of them is able to carry out. If T denotes the set of different
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tasks, its power set P (T ) is partially ordered by set-inclusion (⊆), in the


obvious way. Indeed, this partial order ⊆ is latticial, and it has a smallest


element ∅ and a greatest element T . Here it is defined a map A : U → P (T )


that assigns to each individual the set of tasks that such person is able to


accomplish.


Let now N ≥ 2, N ∈ N and suppose that the N individuals of a society have


defined their preferences on the set U , and that all the individuals use the same


lattice (L,�) to build them. Thus, we have at hand N fuzzy sets A1, A2, . . . , AN :


U → L. In this setting, we understand a social aggregation N -rule as a map FN :


FN → F , where F denotes the family of fuzzy sets whose universe is U and whose


corresponding lattice is (L,�). Of course, it is natural to impose some conditions


on FN , as the neutrality and the respect of the unanimity defined in the obvious


way. When both U and L are topological spaces it is also usual to ask A1, . . . , AN


and FN (A1, . . . , AN ) to be continuous maps from U to L. Thus, the rule FN is said


to be continuous if FN (A1, . . . , AN ) : U → L is a continuous map provided that


A1, . . . , AN : U → L are all continuous.


Again, the existence of an associative neutral and unanimous 2-rule (or bivariate


rule) immediately gives rise to the existence of a neutral and unanimous N -rule,


for every N ≥ 2, N ∈ N. If in addition the associative bivariate rule is continuous,


then the corresponding N -rule is also continuous.


Observe that from a purely abstract point of view, this approach is totally


similar to other ones already considered in Secs. 3 and 4, in which we were looking


for general N -means and associative bivariate means on a nonempty set X : the


main set here is now F , the family of fuzzy sets whose universe is U and whose


corresponding lattice is (L,�).


Indeed, general means or associative maps on the underlying lattice L imme-


diately induce aggregation rules or associative maps on F , as next Proposition 4


shows.


Proposition 4.


(i) For any N ≥ 2, N ∈ N, every general N -mean on L induces a neutral and


unanimous social aggregation N -rule on F .


(ii) Every associative map f : L2 → L induces an associative map F : F2 → F .


Proof. We will only prove part (i). The proof of part (ii) is similar. Let fN : LN →


L be a general N -mean on L. Define now FN : FN → F as follows: Given N fuzzy


sets A1, A2, . . . , AN : U → L, let FN (A1, . . . , AN ) : U −→ L be the map defined


by FN (A1, . . . , AN )(x) = fN (A1(x), . . . , AN (x)) (x ∈ U). It is straightforward to


check that FN is actually neutral and unanimous.


Remark 6. In many fuzzy contexts, if (L,�) is the corresponding lattice of a


fuzzy set, a map f : L2 → L is said to be an aggregation operator. The underlying
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idea is very simple. If we consider two fuzzy sets that share the same universe U


and lattice L, say A1, A2 : U → L, using the operator f a new aggregated fuzzy


set Af(A1,A2) is given by the construction Af(A1,A2)(u) = f(A1(u), A2(u)) for every


element u in the universe U . Among the aggregation operators, a very important


class of fuzzy sets is that of associative maps.47 In our context of aggregation of


preferences, a key subclass of associative aggregation operators is that of associative


bivariate means, now considered in the fuzzy setting.


As a direct consequence of Proposition 2 and Proposition 4, we observe that


in this fuzzy setting an associative bivariate mean generates a possibility theorem.


Therefore, the aggregation operators that are associative bivariate means will be of


capital importance in this fuzzy contexts of aggregation of preferences. By Propo-


sition 3 and Theorem 4, these aggegation operators can be identified to the semi-


latticial preorders that could be defined on the lattice L.


It is important to point out that a semilatticial preorder (say, -) defined on the


corresponding lattice (L,�) of a fuzzy set could be totally independent from �. A


priori, there is no relationship between - and �.


Given a lattice structure (L,�) it is an open problem to describe all the possible


semilatticial partial orders that can be defined on L. To this task, it may help us


to know that in some cases a family of associative aggregation operators (of which


we should select the ones that are also bivariate means) has been analyzed.47


6.2. Associative bivariate means in the fuzzy setting vs. triangular


norms and conorms


In this fuzzy context, we may observe that the associative bivariate means defined


on a lattice (L,�) with a greatest element 1̄ and a smallest element 0̄ satisfy


functional equations that are quite similar to that of triangular fuzzy norms and


conorms. Fuzzy norms are conorms and very important tools, especially used in the


fields of fuzzy logic, fuzzy arithmetic and expert systems.48 (See e.g. Ch. 8 in the


reference48).


Let us recall their definitions.


Definition 13. Let (L,�) be a lattice that has a greatest element 1̄ and a smallest


element 0̄. A map T : L2 → L is said to be a triangular norm if it satisfies the


following conditions:


(i) Associativity: T (T (x, y), z) = T (x, T (y, z)) (x, y, z ∈ L).


(ii) Commutativity: T (x, y) = T (y, x) (x, y ∈ L).


(iii) Monotonicity: T (a, x) � T (b, x) for every x, a, b ∈ L such that a � b.


(iv) Boundary conditions: T (x, 1̄) = x;T (x, 0̄) = 0̄ (x ∈ L).


Similarly, a map S : L2 → L is said to be a triangular conorm if it satisfies the


conditions of associativity, commutativity, andmonotonicity, as well as the following


boundary conditions: S(x, 1̄) = 1̄;S(x, 0̄) = x (x ∈ L).
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Although triangular norms and conorms are associative (and commutative) maps


defined on L, in general they are not associative bivariate means, because the ele-


ments x ∈ L \ {0̄, 1̄} may fail to satisfy the unanimity condition T (x, x) = x when


T is a norm or S(x, x) = x when S is a conorm.


Despite the almost universal use of triangular norms and conorms in many fuzzy


contexts, from the point of view of social choice that we have adopted above their


interest is limited by the following important fact:


Theorem 7. Let (L,�) be a lattice that has a greatest element 1̄ and a smallest


element 0̄. The only associative bivariate mean that is a triangular norm (respec-


tively, conorm) on L is the minimum F (x, y) = x ∧ y = min{x, y} ( respectively,


the maximum G(x, y) = x ∨ y = max{x, y} (x, y ∈ L).


Proof. We furnish the proof for the case of a triangular norm. The situation for


conorms is similar. Thus, let F2 : L2 → L be an associative bivariate mean that


is also a triangular norm. Given a, b ∈ L such that a � b, using the unanimity,


monotonicity, commutativity and boundary conditions that satisfies F2 we have


that a = F2(a, a) � F2(b, a) = F2(a, b) � F2(a, 1̄) = a. Therefore F2(a, b) =


F2(b, a) = a = min{a, b}.


Remark 7.


(i) As we may expect, not every associative bivariate mean on a lattice (L,�)


with a greatest and a smallest element is a triangular norm or conorm. In


other words, the associative bivariate means are not necessarily defined by


the maximum or the minimum. An example is L = {1, 2, 3} endowed with


the usual Euclidean order, and the associative bivariate mean F2 : L2 → L


given by F2(1, 1) = F2(1, 2) = F2(1, 3) = F2(2, 1) = F2(3, 1) = 1;F2(2, 2) =


2;F2(2, 3) = F2(3, 2) = F2(3, 3) = 3.


(ii) Conversely, not every triangular norm or conorm on a lattice (L,�) with a


greatest and a smallest element is an associative bivariate mean. Classical


examples in L = [0, 1] ⊂ R endowed with the usual Euclidean order ≤ are


the product norm P (x, y) = xy, the Lukasiewicz norm L(x, y) = max{x+ y−


1, 0}, the product conorm PC(x, y) = x+ y− xy and the Lukasiewicz conorm


LC(x, y) = min{x+ y, 1} (x, y ∈ [0, 1]).


6.3. Fuzzy comparisons of alternatives


To conclude this Sec. 6, we shall briefly comment another classical fuzzy approach


to aggregate preferences in a social choice context.


In this new approach, the individuals compare the alternatives that belong to a


nonempty set or universe U .


In the crisp contexts, the usual way to compare alternatives is defining some


ordering or binary relation Pi on U , understanding that xPiy (x, y ∈ U) means that
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the individual i prefers the alternative x to the alternative y. Observe that each


relation Pi can be identified to a subset (also denoted Pi) of the product U × U :


(x, y) ∈ Pi ⇐⇒ xPiy (x, y ∈ U).


In this fuzzy setting, however, the relations of preference that each individual


defines could be vague or imprecise. In other words, instead of considering binary


relations that are subsets of the cartesian product U ×U , we pass to consider fuzzy


relations Ai that each individual i defines on U . Each fuzzy relation is a fuzzy subset


of the cartesian product U × U , given by a membership function Ai : U × U → L.


(Here (L,�) is a suitable lattice with a greatest element 1̄ and a smallest element


0̄). In this context, given N ≥ 2, N ∈ N, a social aggregation N -rule would be


a map FN : RN → R, where R denotes the family of fuzzy relations that could


be defined on U taking values on L, or equivalently, the fuzzy subsets of U × U


with corresponding lattice (L,�). This is the approach considered in some recent


papers.49


Thus, we should observe that this approach is, from a pure mathematical point


of view, analog to the former fuzzy approach considered in this section, working


now on U × U instead of directly on U . Indeed, from a purely abstract point of


view, this approach is, now again, a particular case of the ones considered on the


previous Secs. 3 and 4. The main set here is R.


7. Further Comments: Other Functional Equations Arising in


Social Choice Models


The key Theorem 4 characterizes associative bivariate means as semilatticial partial


orders. From this key fact other functional equations appear in a natural way.


7.1. Elections of best elements and the functional equations of


consensus


From the point of view of social choice, if F is an associative bivariate mean on a


nonempty set X , given x, y ∈ X the element F (x, y) ∈ X can be understood as


the final product of a consensus between x and y, that in a certain sense improves


the quality of both elements x, y ∈ X . (Remember that x ≤ F (x, y) and y ≤


F (x, y) with respect to the semilatticial ordering “≤” defined by means of F . Indeed


F (x, y) = x ∨ y).


Roughly speaking, we may interpret F (x, y) as the election of a best element


generated by x and y.


Since F is associative, this idea can be extended to any natural number N ≥ 2.


For instance, for N = 3 we may define a 3-rule F3 as F3(x, y, z) = F (x, F (y, z)) for


every x, y, z ∈ X , and the element F3(x, y, z) can also be understood as the best


element originated by x, y and z.


Having these ideas in mind, we may observe that if an agent changes her opin-


ion and substitutes her choice x by the consensus with the second agent F (x, y),


whereas the second agent keeps her choice y, the final result of the election, namely
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F (F (x, y), y) should be the same best element. In other words, the functional equa-


tion F (F (x, y), y) = F (x, F (x, y)) = F (x, y) must hold for every x, y ∈ X .


From an abstract point of view, we may introduce the following definition.


Definition 14. Let X be a nonempty set. Let F be a bivariate map F : X2 → X .


The map F is said to satisfy the functional equation of consensus if F (F (x, y), y) =


F (x, F (x, y)) = F (x, y) for every x, y ∈ X .


(We point out that in this definition, F is not assumed to be an associative


mean, but merely a bivariate map.)


Remark 8.


(i) As far as we know, the functional equation of consensus is new in the literature.


(ii) We immediately observe that if F is associative and satisfies the unanimity


condition, then it also satisfies the functional equation of consensus. Actually


F (F (x, y), y) = F (x, F (y, y)) = F (x, y) and F (x, F (x, y)) = F (F (x, x), y) =


F (x, y) (x, y ∈ X).


The converse is not true: On the one hand, a constant bivariate map


obviously satisfies the functional equation of consensus, but it fails to sat-


isfy the unanimity condition if X has at least two elements. On the other


hand, there are examples of bivariate maps that satisfy the consensus equa-


tion as well as the unanimity condition, without being associative. Consider


the following example: X = {a, b, c}. The bivariate map F : X2 → X is


given by F (a, a) = F (a, b) = F (b, a) = a; F (b, b) = F (b, c) = F (c, b) = b;


Fc, c) = F (a, c) = F (c, a) = c. Notice that F (a, F (b, c)) = F (a, b) = a but


F (F (a, b), c) = F (a, c) = c.


The functional equation of consensus just considered appears as a natural func-


tional equation coming from social choice contexts (having in mind the idea of best


selections). It can be extended to more variables as next definition shows.


Definition 15. Let X be a nonempty set. Given a natural number N ≥ 2,


a map FN : XN → X is said to satisfy the N -dimensional equation of


consensus if for every i ∈ {1 . . . , N} it holds that FN (x1, . . . , xi, . . . , xN ) =


FN (x1, . . . , xi−1, FN (x1, . . . , xN ), xi+1, . . . , xN ) for every (x1, . . . , xN ) ∈ XN .


Despite associative bivariate means immediately generate N -means for any N ≥


2, we do not know if a similar result can be obtained for bivariate maps that satisfy


the consensus equation. Actually, we do not know if starting from bivariate maps


that satisfy the functional equation of consensus, we can generate for any natural


number N ≥ 2, maps on N variables that satisfy the N -dimensional equation of


consensus. We leave it as an open question.


7.2. Other functional equations


Suppose now that a nonempty set X is endowed with a semilatticial partial order


≤. We already know that this generates an N -mean FN for every natural number
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N ≥ 2, given by FN (x1, . . . , xN ) = x1∨ . . .∨xN for every (x1, . . . , xN ) ∈ XN . If we


define the map G : X2 → X by G(x, y) = FN (x . . . (n− 1 times) . . . x, y) (x, y ∈ X)


we obtain again that G(x, y) = x ∨ y. Similarly FN (y . . . (n − 1 times) . . . y, x) =


G(y, x) = G(x, y). In the same way, for every natural number k such that 1 ≤ k ≤ N


we also have that FN (x, . . . (k times) . . . x, y . . . (n− k times) . . . y) = x ∨ y.


Fixed a natural number k such that 1 ≤ k ≤ N we consider the map FN.k :


X2 → X given by FN.k(x, y) = FN (x, . . . (k times) . . . x, y . . . (n− k times) . . . y) for


every x, y ∈ X .


With this notation, we observe that:


FN (x, . . . (ktimes) . . . x, y . . . (n − k times) . . . y) = FN.k(x, y) = FN.k(y, x) =


FN.n−k(x, y) = FN (x, . . . (n − ktimes) . . . x, y . . . (k times) . . . y) for every x, y ∈ X .


This reminds us the functional equation of migrativity.50 Fixed a number t ∈ [0, 1],


the functional equation of t-migrativity, typical in the study of aggregation functions


in fuzzy contexts, is usually defined as G(t · x, y) = G(x, t · y) for every x, y ∈ [0, 1],


where G : [0, 1]× [0, 1] −→ [0, 1] is the unknown function.


Needless to say that several other functional equations could possibly arise in


these contexts of social choice, either in the crisp or fuzzy settings. Their study


could constitute an interesting framework to be explored in next future.


8. Conclusions


Since the appearance of the Arrovian impossibility theorem in mathematical social


choice, the ideas concerning the restrictions that we should impose to the aggrega-


tion rules, that are built to get a social choice preference from the individual profiles,


must be relaxed and consequently changed, in order to construct new models where


some possibility results could appear.


A common feature encountered in some of those new models is that the aggre-


gation rules must satisfy a suitable system of functional equations.


In many important cases, among those equations the neutrality and unanim-


ity are always present, and some other conditions related to extra (topological or


algebraical) structure are involved.


Although the existence of aggregation rules in several key new models has al-


ready been characterized in the literature (e.g., in the topological or algebraical


Chichilnisky models) it is important to study such functional equations by them-


selves.


Since those functional equations could always have solutions if no topological or


algebraical restriction is added, we may conclude that the failure of the existence


of aggregation rules in some topological or algebraical models is indeed due to that


(topological or algebraical) extra structure.


The simultaneous solutions of the neutrality equation plus the unanimity equa-


tion are called general means, and it is proved that the existence of an associative


bivariate mean induces the existence of general N -means for any N ≥ 2, N ∈ N.


For this reason, we also pay attention to the study of the associativity equation.
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As far as we know, this approach to the study of topological or algebraical


Chichilnisky models through functional equations (introduced in the present paper)


is new in the social choice literature.


The systematic use of functional equations to deal with a large variety of social


choice aggregation models is, in our opinion, one of our main contributions.


The consideration of a fuzzy setting to aggregate preferences or choices into a


collective one, being a classical item in the social choice literature, suggests us to


analyze which functional equations are involved in some fuzzy approaches.


However, we prove that in some of the most classical fuzzy models introduced to


aggregate preferences, the functional equations involved are again those that deal


with general means, as well as the associativity equation, so that from a pure ab-


stract point of view, in what concerns the searching for aggregation rules those fuzzy


models are, roughly speaking, isomorphic to the crisp models previously analyzed.
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