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Abstract We introduce the concept of the consensus functional equation, for a bi-
variate map defined on an abstract choice set. This equation is motivated by mis-
cellaneous examples coming from different contexts. In particular, it appears in the
analysis of sufficiently robust agreements arising in Social Choice. We study the
solutions of this equation, relating them to the notion of a rationalizable agreement
rule. Specific functional forms of the solutions of the consensus functional equation
are also considered when the choice sets have particular common features. Some
extension of the consensus equation to a multivariate context are also explored.
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1 Introduction

Assume that a research team, working individually, can reach a best output, say x.
In the same way, a second (different) team, working individually, can reach their
best performance, say y. However, if both teams collaborate and work together, they
could reach an even better achievement, say F(x,y). In this situation we may think
that if one of the research teams could be able to get, working individually, the best
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Departamento de Análisis Económico. Universidad de Zaragoza (Spain). Tel.: + 34-976761818.
Fax: + 34-976761996, e-mail: jamolina@unizar.es

1



2 Juan Carlos Candeal, Esteban Induráin and José Alberto Molina

possible output F(x,y), the collaboration with the other team would not lead beyond
that best attainment F(x,y). In other words, the following functional equation arises:

F(x,y) = F(F(x,y),y) = F(x,F(x,y)).

Here x,y ∈ X , where X denotes he set of all possible goals of any research team.

This functional equation was already introduced in [11] and [13], where it was
named the consensus functional equation.

The same equation arises when we study some particular kinds of agreements be-
tween two individuals, encountered in Social Choice. In this direction, let us assume
that X is a nonempty set, that represents the collection of possible choices of each
individual. (i.e.: X can be interpreted as the choice set, which is the same for both
individuals). Suppose that F : X×X→ X is the map or that expresses the agreement
between them. (i.e.: F can be interpreted as an agreement rule). In other words, if
the first individual chooses the alternative x∈ X while the second individual chooses
the alternative y ∈ X , then F(x,y) ∈ X is another alternative, where the two agents
agree, and so-to-say represents a consensus option for both agents.

The consensus equation is based upon the following idea: Suppose that we con-
sider a situation in which the agreement is so robust that, if either of the individiuals
changes her/his initial position on the one agreed by both of them, then the for-
mer achieved agreement should not vary, and remains the same. In formula, when
analyzing this kind of agreements we should study the functional equation

F(F(x,y),y) = F(x,F(x,y)) = F(x,y), (x,y ∈ X).

In this second example, we may notice that the last equality of the formula is exactly
the unanimity principle over the alternatives that are in the codomain of the map F
(i.e., F(z,z) = z, for every z ∈ F(X ×X) ⊆ X). Thus, if F satisfies non-imposition
condition (i.e., F is surjective, so that X = F(X ×X)), then the consensus equation
implies the unanimity principle for the whole X .

The consensus equation transpires a property that, in some sense, reminds us the
Nash equilibrium concept coming from Game Theory (see e.g. [26, 20]). As a matter
of fact, if, for a given x,y ∈ X , we interpret F(x,y) as the “best social agreement”
(provided that the first agent chooses x whereas the second one chooses y), then the
“best choice” for the first agent in order to reach that “best collective agreement”,
provided that the second agent keeps at her/his choice y, is to single out F(x,y). The
same argument applies for the second individual.

Here we furnish two further examples, that may also constitute a motivation to
study the functional equation of consensus by its own merit:

1. Suppose that several different tasks must be done to achieve a goal. Let T be the
set of those tasks to be done. We may identify an individual with the subset of
tasks that she/he is able to do. In this case, we may interpret X as the power set
P(T ), and consider the union “∪” of subsets of T as a binary operation defined
on P(T ). Then it is clear that (x∪ y)∪ y = x∪ (x∪ y) = x∪ y for every x,y ∈
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P(T ). Therefore, if we change the notation, setting F(x,y) = x∪y (x,y ∈ X) we
immediately get

F(F(x,y),y) = F(x,F(x,y)) = F(x,y) (x,y ∈ X).

2. Suppose that a nonempty set X is given a total order “�”. Given two elements
x,y ∈ X , let F(x,y) = y if x � y, otherwise let F(x,y) = x (x,y ∈ X). It is obvi-
ous that this bivariate map F : X ×X → X satisfies, in particular, the functional
equation

F(F(x,y),y) = F(x,F(x,y)) = F(x,y) (x,y ∈ X).

The paper is organized as follows:
Section 2 contains the basic background.

In Section 3 we study the consensus equation from an abstract point of view.
To that end, we introduce a key concept; namely, that of a rationalizable bivariate
map. Rationalizability is a notion that resembles the one already introduced in the
literature of single-valued choice functions (see [4, 5, 28] or, more recently, [25]).
Here, it means that a particular binary relation, that we call the revealed relation,
describes F . (Thus, a map F : X ×X , on a choice set X , is said to be rationalizable
if it can be expressed in terms of a suitable binary relation defined on X , as stated
in Definition 5 in Section 2 below). We characterize bivariate maps that satisfy the
consensus equation plus the anonymity principle as those that are rationalizable.

Associativity (i.e., F(F(x,y),z) = F(x,F(y,z)), for every x,y,z ∈ X) is a slightly
more demanding property than the fulfilment of the consensus equation (see [11,
13]). When an agreement rule F : X×X→X is associative, we get a more appealing
result: namely, in this case there is a partial order, say �, defined on X such that
(X ,�) is a semi-lattice and F(x,y) turns out to be the supremum, with respect to
�, of {x,y}, for every x,y ∈ X (see [11]). Notice that associativity can be viewed as
an extension property (see e.g. [21, 16, 12, 22, 1, 29]). That is, if F is associative
then, for any finite number of agents, we can induce agreement rules based on it.
For instance, if the number of agents is three we may induce a trivariate rule G : X×
X ×X → X by declaring that G(x,y,z) = F(F(x,y),z) = F(x,F(y,z)) (x,y,z ∈ X).
In other words, associativity invites everyone “to join the party”.

We also pay attention to the case where F is a selector (see [23, 18]), i.e.,
F(x,y) ∈ {x,y}, for every x,y ∈ X . In this case, and for obvious reasons, we will
say that F satisfies the independence of irrelevant alternatives condition. Quite sur-
prisingly, the independence of irrelevant alternatives condition is proved to be more
restrictive than consensus.

In Section 4 we study several aspects of the solutions of the consensus equation
in concrete scenarios.

In particular, we pay attention to the case in which X can be identified to a real
interval. In this case, we add some extra conditions on F , namely monotonicity
(Paretian properties) and continuity. Then we get some impossibility as well as
some possibility results about the existence of agreement rules. On the one hand,
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we prove that there is no strongly Paretian bivariate map which satisfies consensus.
On the other hand, we show that the only continuous agreement rules that satisfy
the independence of irrelevant alternatives condition are the max and the min (i.e.,
those based upon the most and the least favoured individuals, respectively).

In Section 5 we explore the extended consensus equation, considering n-variate
maps that correspond to general models of consensus where n-individuals are in-
volved, obviously with n≥ 2.

A final Section 6 of further comments closes the paper.

Remark 1. Throughout the paper we will focus on the consensus equation involving
only two variables. The generalization of this equation for more than two variables
could constitute the raw material to build future pieces of research.

2 Preliminaries

In what follows, X will denote a nonempty set, that we interpret as the choice set (or
the set of alternatives). Moreover, F : X×X → X will be a bivariate map defined on
X .

Definition 1. The map F is said to satisfy:

(1) the unanimity principle if F(x,x) = x for every x ∈ X ,
(2) the anonymity principle if F(x,y) = F(y,x) for every x,y ∈ X ,
(3) the consensus functional equation (short, consensus) if it holds that F(F(x,y),y)=

F(x,F(x,y)) = F(x,y) for every x,y ∈ X ,
(4) the associativity equation if F(x,F(y,z)) = F(F(x,y),z) for every x,y,z ∈ X ,
(5) the independence of irrelevant alternatives condition (shortly denoted by IIA))

if F(x,y) ∈ {x,y}, for every x,y ∈ X .

Remark 2. Needless to say that the word “consensus” is encountered in many
branches of mathematical Social Choice theory, under a wide sort of scopes and
approaches (see e.g. [15, 27, 30, 10, 14, 8, 19, 24, 6, 9, 20, 2]). All these contexts,
as the equation introduced throughout the present manuscript, transpire the idea of
buying models to interpret situations in which a “social agreement” between indi-
viduals is reached, following some “rules” or procedures.

Definition 2. A bivariate map F : X ×X → X is said to be an agreement rule if it
satisfies the conditions (1) to (3) of Definition 1 above.

Now we recall some basic concepts on binary relations. A binary relation �
defined on X is said to be a partial order if it is reflexive (i.e., x � x holds for
every x ∈ X), antisymmetric (i.e., (x� y)∧ (y� x)⇒ x = y, for every x,y ∈ X) and
transitive (i.e., (x � y)∧ (y � z)⇒ x � z, for every x,y,z ∈ X). If, in addition, � is
total (i.e., (x � y)∨ (y � x) holds for every x,y ∈ X), then � is said to be a total
order.
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A binary relation R defined on X is said to have the supremum property if, for
every x,y ∈ X , there is a unique z ∈ X such that the following two conditions are
met: (i) (xRz)∧(yRz) holds; (ii) if there is u∈ X such that xRu and yRu hold, then
zRu also holds. The unique element z that satisfies conditions (i) and (ii) is called the
supremum of x and y and it is denoted by supR{x,y}. Whenever supR{x,y}∈ {x,y},
then it is called maximum of x and y and it is denoted by maxR{x,y}.

Definition 3. Let � be a partial order defined on X . Then (X ,�) is said to be a
semi-lattice if � has the supremum property.1

3 Consensus vs. rationalizable bivariate maps

The main purpose of this section is to provide a description of the agreement rules
defined on a nonempty choice set X in terms of certain binary relations on X with
special features. To that end, the following concept will play an important role.

Definition 4. Let X be a nonempty set. Let F be a bivariate map defined on X .
Associated with F we consider on X a new binary relation, denoted by Rr and
defined as follows: xRry ⇐⇒ F(x,y) = y, for every x,y ∈ X . The binary relation
Rr is said to be the revealed relation of F .

Before introducing the notion of a rationalizable bivariate map, a notational con-
vention is needed.

Notation. Let R be a binary relation defined on X . Then, for each x ∈ X , GR(x)
will denote the upper contour set of x, i.e., GR(x) = {z ∈ X : xRz}.

Definition 5. A bivariate map F on X is said to be rationalizable if F(x,y) ∈
GRr(x)∩GRr(y), for every x,y ∈ X .

Remark 3. That is, the concept of rationalizability intends to describe a bivariate
map by means of the upper contour sets of its corresponding revealed relation.

Next Theorem 1 characterizes the bivariate anonymous maps that satisfy the con-
sensus equation in terms of those which are rationalizable.

Theorem 1. Let F be a unanimous and anonymous bivariate map defined on X.
Then F is rationalizable if and only if it satisfies consensus.

Proof. Suppose that F is an anonymous bivariate map defined on X which sat-
isfies the consensus equation. Let x,y ∈ X be fixed. In order to show that F is
rationalizable, notice that F(x,F(x,y)) = F(x,y) since F satisfies the consensus

1 For an excellent account of the material related to latticial or semi-latticial structures, see e.g.,
[7, 17].
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equation. Thus, by definition of Rr, F(x,y) ∈ GRr(x). Moreover, by anonymity to-
gether with consensus, it holds that F(y,F(x,y)) = F(F(x,y),y) = F(x,y). There-
fore, F(x,y) ∈ GRr(y). So, F(x,y) ∈ GRr(x)∩GRr(y). Since x,y are arbitrary ele-
ments of X , it follows that F is rationalizable.

For the converse, suppose that F is an anonymous rationalizable bivariate map
defined on X . We want to see that F satisfies consensus. To that end, let x,y ∈ X
be fixed. Since F is rationalizable, it holds that xRrF(x,y) and yRrF(x,y). But, by
definition of the revealed consensus relation, this means that F(x,F(x,y)) = F(x,y)
and F(y,F(x,y)) = F(x,y). Now, by anonymity, F(y,F(x,y)) = F(F(x,y),y) and
therefore F(F(x,y),y) = F(x,y). The fact that F(F(x,y),F(x,y)) = F(x,y) follows
directly from unanimity. Since x,y are arbitrary elements of X , we have shown that
F satisfies consensus. ut

Remark 4. A unanimous and anonymous bivariate map F defined on X may fail to
be rationalizable, even when Rr is transitive. Indeed, let X = {x,y,z} and define F :
X×X→X as follows: F(x,x) = F(y,z) = F(z,y) = x, F(y,y) = F(x,z) = F(z,x) = y
and F(z,z) = F(x,y) = F(y,x) = z. It is clear that this map F is unanimous and
anonymous. In addition, an easy calculation gives: Rr = {(x,x),(y,y),(z,z)}. In
other words, xRrx, yRry and zRrz are the only possible relationships, according to
Rr, among the three elements of X . Thus, in addition to being reflexive and anti-
symmetric, Rr is transitive too. However, F is not rationalizable since, for example,
z = F(x,y) /∈ GRr(x)∩GRr(y).

In general, as the next Proposition 1 shows, for a (unanimous) bivariate map
F , consensus is a less restrictive condition than associativity or independence of
irrelevant alternatives.

Proposition 1. Let F be a bivariate map defined on X.

(i) If F is unanimous and associative, then it safisfies consensus.
(ii) If F satisfies IIA, then it safisfies consensus.

Proof. (i) Let x,y ∈ X be fixed. Then, by associativity and unanimity, it holds that
F(F(x,y),y) = F(x,F(y,y)) = F(x,y). The other equality of consensus is proved
similarly. So, since x,y are arbitrary points of X , F satisfies consensus.

(ii) Let x,y∈ X be fixed. Since F satisfies IIA, either F(x,y) = x or F(x,y) = y. If
F(x,y) = x, then we have that F(F(x,y),y) = F(x,y) = x = F(x,x) = F(x,F(x,y)).
Now, if F(x,y) = y, then F(F(x,y),y) = F(y,y) = y = F(x,y) = F(x,F(x,y)). So,
in any of the two cases, we have that F(F(x,y),y) = F(x,F(y,y)) = F(x,y). Since
x,y are arbitrary points of X , F satisfies consensus. ut

As a direct consequence of Theorem 1 and Proposition 1 we obtain the following
corollary.

Corollary 1. (i) Every unanimous, anonymous and associative bivariate map de-
fined on X is rationalizable.

(ii) Every bivariate map defined on X which satisfies IIA is rationalizable.
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Remark 5. It is easy to see that, for a unanimous and anonymous bivariate map F ,
associativity and IIA are independent conditions. Moreover, there are agreement
rules (hence rationalizable bivariate maps) other than associative maps or those that
satisfy IIA. For a thorough description of the links that can be established among
the mentioned properties of bivariate maps, see [13].

We now focus on associative agreement rules. As we have just seen, associativity
is more restrictive than consensus. Indeed, associativity reinforces in a significant
manner the scope of Theorem 1, as next Theorem 2 states.

Theorem 2. Let F be an associative agreement rule defined on X. Then, (X ,Rr) is
a semi-lattice and F(x,y) = supRr{x,y}, for every x,y ∈ X.

Proof. Let us first prove that Rr is a partial order on X . Indeed, reflexivity fol-
lows directly from unanimity of F . To see that Rr is antisymmetric, let x,y ∈ X be
such that xRry and yRrx hold. Then, by definition of Rr, we have that F(x,y) = y
and F(y,x) = x. So, by anonymity, x = y and therefore Rr is antisymmetric. To
prove transitivity of Rr, let x,y,z ∈ X be such that xRry and yRrz hold. Then,
by definition of Rr again, we have that F(x,y) = y and F(y,z) = z. Let us see
that F(x,z) = z, which would mean that xRrz. Indeed, F(x,z) = F(x,F(y,z)) =
F(F(x,y),z) = F(y,z) = z, the second equality being true since F is associative.
Thus, Rr is transitive too.

Let us show now that (X ,Rr) is a semi-lattice. To that end, we must prove
that, for given arbitrary elements x,y ∈ X , the supremum supRr{x,y} exists. No-
tice that, since F is asociative, by Proposition 1 (i), it satisfies consensus too. So,
F(x,F(x,y)) = F(x,y) and therefore, by definition of Rr, we have that xRrF(x,y).
In a similar way, now using anonymity and consensus, we get F(y,F(x,y)) =
F(F(x,y),y) = F(x,y). That is, yRrF(x,y). So F(x,y) is an upper bound, with re-
spect to Rr, of x and y. Let us see that it is the least upper bound. To see this,
let z ∈ X such that xRrz and yRrz. Then, by definition of Rr again, we have that
F(x,z) = F(y,z) = z. Hence F(F(x,y),z)) = F(x,F(y,z)),y) = F(x,z) = z, the first
equality being true by associativity. Therefore, it follows that F(F(x,y),z)) = z
which means that F(x,y)Rrz. So, we have shown that F(x,y) = supRr{x,y}, which
proves the second claim of the statement of Theorem 2. This finishes the proof. ut

We now present some illuminating observations about the concepts introduced
above.

Remark 6. (i) It should be observed that, if R is a binary relation on X for which
(X ,R) is a semi-lattice, then the bivariate map FR defined on X as FR(x,y) =
supR{x,y} ∈ X (x,y ∈ X) is an associative agreement rule. Moreover, in this case,
it can be easily proved that R and Rr coincide. So, associative agreement rules are
characterized as those that can be rationalized by means of semi-latticial structures.

(ii) An agreement rule that satisfies IIA need not be associative. Moreover, and
unlike the associative case, the revealed relation Rr in this situation can exhibit
intransitivities. To see an example, consider the set X = {x,y,z} and the bivariate
map F : X ×X → X given by F(x,x) = F(x,z) = F(z,x) = x; F(x,y) = F(y,x) =
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F(y,y) = y; F(y,z) = F(z,y) = F(z,z) = z. It is clear that F is anonymous and
satisfies IIA. However, it is not associative since F(x,F(y,z)) = F(x,z) = x, whereas
F(F(x,y),z) = F(y,z) = y. In terms of the revealed relation Rr we have that xRry,
yRrz and zRrx. So, there is a “cycle”, with respect to Rr, for the three-element set
{x,y,z}.

(iii) If an agreement rule F satisfies IIA, then the revealed consensus relation Rr
becomes a total order on X . Moreover, if an agreement rule F which satisfies IIA
is also associative, then F(x,y) = maxRr{x,y}, for every x,y ∈ X . So, associative
agreement rules that satisfy IIA are characterized as those that can be rationalized
by means of totally ordered structures.

(iv) Associative agreement rules have an interesting property that we call the ex-
tension property. The extension property means that an associative (bivariate) agree-
ment rule generates associative, unanimous and anonymous n-variate rules, for any
finite number of agents n ∈ N. In other words, if a (unanimous and anonymous)
map involving just two individuals is associative then it is possible that more and
more individuals can “join the party” and enjoy a “stable” agreement. So, from a
behavioural perspective, associativity is an appealing property. Indeed, let F2 be an
associative (bivariate) agreement rule. Then, by Theorem 2, F2(x,y) = supRr{x,y},
for every x,y∈X . Now, for any n≥ 3, define Fn : Xn = X× . . . (n-times) . . .×X→ X
as follows: Fn(x1, . . . ,xn) = supRr{x1, . . . ,xn}, for every x1, . . . ,xn ∈ X . It is then
straightforward to see that, for every n≥ 3, the n-variate map Fn so-defined is asso-
ciative, unanimous and anonymous.

(v) It should be noted that Theorem 2 can be applied to scenarios in which the
choice set X is, on its own, a space of preferences. Indeed, let X denote the collec-
tion of all the total preorders (i.e.: transitive and total binary relations) that can be
defined on a finite set Z. Let F : X ×X → X be the Borda rule (see [25]). Then, it
is straightforward to see that F is an associative agreement rule. Thus, Theorem 2
states that the Borda rule is entirely described by the revealed relation on X . Actu-
ally, it is simple to prove that, in this case, Rr is given as follows: -1 Rr -2 if and
only if -2 ⊆ -1 and ≺1 ⊂ ≺2, (-1,-2∈ X). Here, ≺ stands for the asymmetric
part of - (i.e., x≺ y if and only if ¬(y - x), for every x,y ∈ X).

As seen in the proof of Theorem 2, an associative, unanimous and anonymous
bivariate map defined on X has the property that its revealed relation turns out to
be transitive. The converse is not true even though the bivariate map is rational-
izable (or, equivalently by Theorem 1, it satisfies consensus). Nevertheless, for a
unanimous bivariate map that satisfies IIA, transitivity of its revealed relation im-
plies associativity. These two facts are proved through the next Proposition 2, which
closes this section.

Proposition 2. (i) An agreement rule such that its associated revealed relation is
transitive may fail to be associative.

(ii) Every agreement rule that satisfies IIA is associative.

Proof. (i) Let X = {x,y,z,u}. Let F : X ×X → X be the bivariate map given by
F(x,x) = x; F(y,y) = y; F(x,y) = F(x,z) = F(y,z) = F(y,z) = F(z,x) = F(z,y) =
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F(z,z) = F(z,u) = F(u,z) = z; F(x,u) = F(y,u) = F(u,x) = F(u,y) = F(u,u) = u.
It is clear that F satisfies unanimity and anonymity. Let us see that it is an agreement
rule (i.e., it satisfies consensus) by showing that it is rationalizable (see Theorem 1
above). To that end, let Rr be its revealed relation. A direct calculation proves that
Rr is given by: xRrx, xRrz, xRru, yRry; yRrz, yRru, zRrz, uRrz, uRru. Let
us observe that Rr is transitive. Now, by checking the upper contour sets of Rr,
we obtain: GRr(x) = {x,z,u}; GRr(y) = {y,z,u}; GRr(z) = {z}; GRr(u) = {z,u}.
Thus F(x,x) = x ∈GRr(x); F(x,y) = z ∈GRr(x)∩GRr(y); F(x,z) = z ∈GRr(x)∩
GRr(z); F(x,u) = u ∈ GRr(x)∩GRr(u); F(y,y) = y ∈ GRr(y); F(y,z) = z ∈
GRr(y)∩GRr(z); F(y,u) = u∈GRr(y) ∩ GRr(u); F(z,z) = z∈GRr(z);F(z,u) =
z ∈ GRr(z)∩GRr(u). Therefore F is rationalizable. Finally, observe that F is not
associative since F(F(x,y),u) = F(z,u) = z 6= u = F(x,u) = F(x,F(y,u)).
(ii) Let x,y,z ∈ X be fixed. We must show that F(F(x,y),z) = F(x,F(y,z)). Since F
satisfies IIA, it follows that F(x,y) ∈ {x,y}, F(x,z) ∈ {x,z} and F(y,z) ∈ {y,z}. So
we distinguish among eight possibilities:
(1) F(x,y) = x, F(x,z) = x and F(y,z) = y. In this case, F(F(x,y),z) = F(x,z) =
x = F(x,y) = F(x,F(y,z)) and we are done.
(2) F(x,y) = x, F(x,z) = x and F(y,z) = z. In this case, F(F(x,y),z) = F(x,z) =
x = F(x,z) = F(x,F(y,z)) and we are done again.
(3) F(x,y) = x, F(x,z) = z and F(y,z) = y. Now, since F is anonymous, F(y,x) =
F(x,y) = x and F(z,y) = F(y,z) = y. So we get yRrx and xRrz. Thus, by transitivity
of Rr, it follows that yRrz. But F(z,y) = F(y,z) = y means that zRry too. In ad-
dition, Rr is antisymmetric since F is anonymous. Therefore, y = z. Now, if y = z,
F(F(x,y),z) = F(x,F(y,z)) becomes F(F(x,y),y) = F(x,F(y,y)) or, equivalently,
F(F(x,y),y) = x = F(x,y) = F(x,F(y,y)) and we are done.
(4) F(x,y) = x, F(x,z) = z and F(y,z) = z. In this case, F(F(x,y),z) = F(x,z) = z =
F(x,F(y,z)) and we are done.
(5) F(x,y) = y, F(x,z) = x and F(y,z) = y. In this case, F(F(x,y),z) = F(y,z) =
y = F(x,y) = F(x,F(y,z)) and we are done.
(6) F(x,y) = y, F(x,z) = x and F(y,z) = z. In this case, and arguing in the
same way as in case (3) above, we have that xRry and zRrx which, by tran-
sitivity, implies that zRry. This, together with yRrz, implies that y = z. Then,
F(F(x,y),z) = F(x,F(y,z)) becomes F(F(x,y),y) = F(x,F(y,y)) or, equivalently,
F(F(x,y),y) = y = F(x,y) = F(x,F(y,y)) and we are done again.
(7) F(x,y) = y, F(x,z) = z and F(y,z) = y. In this case, F(F(x,y),z) = F(y,z) =
y = F(x,y) = F(x,F(y,z)) and we are done. Finally,
(8) F(x,y) = y, F(x,z) = z and F(y,z) = z. In this case, F(F(x,y),z) = F(y,z) = z =
F(x,z) = F(x,F(y,z)) which concludes the proof. ut

Remark 7. It can be shown that if X is a three-elements set (i.e, X = {x,y,z}), then
any agreement rule defined on X for which Rr is transitive is, in fact, associative.
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4 Possibility vs. impossibility results on the existence of
agreement rules in continuum spaces

In this section, we study the consensus equation in particular contexts. In general,
the solutions of this equation cannot be described in an easy way (see [13] for de-
tails). However, in some special cases, and imposing also some natural extra condi-
tions on the map F , it is indeed possible to entirely describe its solutions. (See e.g.
[23, 13] for further results in this direction).

Throughout this section, we assume that the choice set X is a real interval.

Both impossibility as well as possibility results arise. On the one hand, we prove
that there is no strongly Paretian bivariate map which satisfies consensus. On the
other hand, we show that the only continuous agreement rules that satisfy IIA are
the max and the min.

In what follows, I will represent an interval of the real line R.

Remark 8. At this stage, we point out that real intervals naturally arise to represent
the set of alternatives in several contexts of Social Choice. Thus, X could be a set
of monetary payoffs or, in a probabilistic scenario, X could represent the space of
lotteries between two outcomes. In the first situation X can be identified as the real
interval [0,∞). And in the second case, X can be identified as [0,1].

Notation. Let F : I ×I →I be a bivariate map. For every x ∈I , Fx (respec-
tively, Fx) stands for the vertical (respectively, horizontal) restriction of F , that is,
Fx(y) = F(x,y) ∈I (respectively, Fx(y) = F(y,x) ∈I ).

We recall the concept of an idempotent function defined on I . This concept will
play a significant role in the sequel, in particular in the next Proposition 3.

Definition 6. A function f : I →I is said to be idempotent if f ( f (x)) = f (x), for
every x ∈I .

Proposition 3. Let F : I ×I →I be a bivariate map.

(i) F is unanimous if and only if Fx(x) = Fx(x) = x for every x ∈I .
(ii) F is anonymous if and only if Fx(y) = Fx(y) for every x,y ∈I .
(iii) F satisfies consensus if and only if, for every x ∈ X, both restrictions Fx and

Fx are idempotent functions and, for each z ∈ F(I ×I ), it holds that Fz(z) =
Fz(z) = z.

Proof. Parts (i) and (ii) follow directly. So we prove only part (iii). Suppose that
F satisfies consensus and let x ∈ X be fixed. Then, we have that Fx(Fx(y)) =
F(x,Fx(y)) = F(x,F(x,y)) = F(x,y) = Fx(y) for every y ∈ I . Also, we have that
Fx(Fx(y)) = F(Fx(y),x) = F(F(y,x),x) = F(y,x) = Fx(y), for every y∈I . There-
fore, Fx and Fx are both idempotent functions. Since x is an arbitrary element of I ,
we have proved that Fx and Fx are both idempotent functions for every x ∈I . The
fact that, for each z∈F(I ×I ), Fz(z) = Fz(z) = z follows directly from consensus.



The consensus functional equation in Agreement Theory 11

Conversely, suppose that, for every x ∈ I , Fx and Fx are both idempotent
functions. Let x,y ∈ I be fixed. Then, we have that F(x,F(x,y)) = Fx(Fx(y)) =
Fx(y) = F(x,y), and also we have that F(x,y) = Fy(x) = Fy(Fy(x)) = F(Fy(x),y) =
F(F(x,y),y). Moreover, F(F(x,y),F(x,y)) = F(x,y) since, by hypothesis, Fz(z) =
Fz(z) = z, for every z ∈ F(I ×I ). Therefore, F satisfies consensus.

Remark 9. It should be noted that the concepts introduced above can indeed be de-
fined in a more abstract setting. As a matter of fact, Proposition 3 remains true if I
is replaced by a nonempty choice set X .

Before presenting a basic definition of the most familiar notions involving
monotonicity properties of real-valued bivariate functions, we recall that given
(x,y),(u,v) ∈ I ×I , the notation (x,y) ≤ (u,v) means that both x ≤ u and y ≤ v
hold. Similarly, (x,y) < (u,v) means that both (x,y)≤ (u,v) and (x,y) 6= (u,v) hold.
Finally, (x,y)� (u,v) means that both x < u and y < v hold.

Definition 7. A bivariate map F : I ×I →I is said to be:

(i) Paretian (or non-decreasing) if (x,y)≤ (u,v) implies F(x,y)≤F(u,v), for every
x,y,u,v ∈I .

(ii) weakly Paretian if (x,y)� (u,v) implies F(x,y) < F(u,v), for every x,y,u,v ∈
I .

(iii) strongly Paretian if (x,y) < (u,v) implies F(x,y) < F(u,v), for every x,y,u,v∈
I .

(iv) dictatorial if either F(x,y) = x for every x,y ∈I holds, or F(x,y) = y for every
x,y ∈I holds.

(v) dichotomic if for every x ∈ I the functions Fx and Fx are either constant or
strictly increasing.

(vi) continuous if the inverse image of every Euclidean open subset of I is an open
subset of I ×I , where I ×I is endowed with the usual product (Euclidean)
topology.

Remark 10. Notice that the monotonicity properties that appear in Definition 7
above are meaningful in the case that the choice set X is a set of monetary pay-
offs.

Now we present a general theorem that allows us to derive certain impossibility
results. Before a simple and useful lemma concerning strictly increasing real-valued
idempotent functions is shown.

Lemma 1. Let f : I → I be a strictly increasing idempotent function. Then,
f (x) = x, for every x ∈ I . (In other words, the identity function is the only one
strictly increasing real-valued function that is idempotent.)

Proof. Let x ∈ I arbitrarily be given. Let us see that f (x) = x. If, on the con-
trary, f (x) 6= x then either f (x) < x or x < f (x). Assume that f (x) 6= x. Then, since
f is strictly increasing, we have that f ( f (x)) < f (x). But, since f is idempotent,
f ( f (x)) = f (x). So, we get f (x) < f (x), which is a contradiction. The case x < f (x)
is handled in a similar way.
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Theorem 3. Let F : I ×I →I be a bivariate map. Then the following assertions
are equivalent:

i) F is dichotomic, unanimous and satisfies consensus.
ii) F is dictatorial.

Proof. (ii) implies (i) is routine. So, we will concentrate on (i) implies (ii). Assume
then that F is dichotomic, unanimous and satisfies consensus. Let us prove first that
there cannot exist x ∈ I such that both Fx and Fx are constant functions. Indeed,
suppose, by way of contradiction, that there is x0 ∈I for which both Fx0 and Fx0 are
constant functions. Then, since F is unanimous and therefore Fx0(x0) = x0, it holds
that Fx0(y) = x0 = Fx0(y), for all y ∈ I . Now, let x1 ∈ I so that x0 < x1 (if any).
The case x1 < x0 (if any) is similar. Then, Fx1(x0) = Fx0(x1) = x0 < x1 = Fx1(x1).
So, since, by hypothesis, F is dichotomic, it follows that Fx1 is a strictly increasing
function. Now, since F satisfies consensus, by Proposition 3(iii), Fx1 is idempotent.
Thus, by the previous lemma, Fx1 is the identity map (i.e., Fx1(y) = y, for all y∈I ).
In a similar way, we can prove that Fx1 is the identity map. Therefore, we have
shown, in fact, that, for every z ∈ I such that x0 < z (if any), both functions Fz
as well as Fz are the identity map. Let now consider three points x0,x1,x2 ∈ I
such that x0 < x1 < x2 (if any). Then, since Fx1 is the identity map, it follows that
F(x2,x1) = Fx2(x1) = x1. Now, by definition, we have that F(x2,x1) = Fx1(x2). So,
Fx1(x2) = x1 6= x2, which contradicts the fact, shown above, that Fx1 is the identity
function. Therefore, there cannot exist x ∈I such that both Fx and Fx are constant
functions.

Using a similar argument to that employed above we can prove that there cannot
exist x ∈I such that both Fx and Fx are strictly increasing functions. (The proof of
this assertion is left to the reader).

So, we have proved that, for every x ∈ I , if Fx is a constant (respectively, the
identity) function, then Fx is the identity (respectively, a constant) function. Suppose
now that, for some x0 ∈I , Fx0 is constant and Fx0 is the identity. Let us show that
this situation leads to the conclusion F(x,y) = x, for all x,y∈I (in other words, F is
dictatorial, the first individual acting as a dictator). Indeed, let x1 ∈I so that x0 < x1
(if any). Then Fx1(x0) = F(x1,x0) = Fx0(x1) = x1, the last equality being true since
Fx0 is the identity. Now, by unanimity, Fx1(x1) = x1. So, Fx1(x0) = x1 = Fx1(x1),
hence, since F is dichotomic, it follows that Fx1(y) = x1, for all y ∈ I . The case
x1 < x0 (if any) is similar leading to the same conclusion (i.e., Fx1(y) = x1, for all
y ∈I ). Thus, F(x,y) = Fx(y) = x, for all x,y ∈I .

Suppose now that, for some x0 ∈ I , Fx0 is the identity and Fx0 is constant. Ar-
guing in a similar manner as above, it can be seen now that F(x,y) = Fx(y) = y, for
all x,y ∈I . This ends the proof.

Theorem 3 immediately gives rise to the following corollaries.

Corollary 2. There is no dichotomic bivariate map F : I ×I → I that satisfies
unanimity, anonymity and consensus.

Proof. Just observe that dictatorial bivariate maps on I are not anonymous.
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Corollary 3. There is no strongly Paretian bivariate map F : I ×I → I that
satisfies unanimity and consensus.

Proof. It is also a straightforward consequence of Theorem 3. Indeed, suppose that
there is a bivariate map, say F , that is strongly Paretian, unanimous and satisfies
consensus. Then, since, clearly, strongly Paretian implies dichotomic, it follows, by
Theorem 3, that F is dictatorial. But neither of the two dictatorial bivarite maps are
strongly Paretian. This contradiction provides the result.

Remark 11. (i) A careful glance at the proof of Theorem 3 above shows that the only
bivariate map on I which satisfies consensus and has the additional property that
all of its vertical restrictions are strictly increasing functions (respectively, all of
its horizontal restrictions are strictly increasing functions) is dictatorial over the
second (respectively, first) coordinate. That is, F(x,y) = y for every x,y ∈ I
(respectively, F(x,y) = x for every x,y ∈I ).

(ii) If strongly Paretian is relaxed to Paretian (or weakly Paretian) then the impos-
sibility result does not hold true. For example, consider the dictatorial bivariate
maps or the max/min functions.

It is interesting to search for some possibilities results based on certain natural
properties, in addition to consensus, of the bivarite map. In [13], it was offered a
characterization of the maximum rule (i.e., F(x,y) =max{x,y}), for the case I =
R, in terms of five properties; namely, continuity, unanimity, anonimity, consensus
and upper-Pareto. A bivarite map F : R×R→ R is said to be upper-Paretian if
it is non-decreasing and for every x,y ∈ R there exists u ∈ R such that y < u and
F(x,y) < F(x,u). It is not difficult to show that this latter characterization result
remains true if R is replaced by a real interval I . A much more easy result can
be obtained if a more demanding property than consensus is required; namely the
fulfilment of IIA. We now state this possibility result. Actually, we establish that
the only continuous bivariate maps F : I ×I → I that satisfy IIA are the max,
the min and the dictatorial functions. In particular, we have that the only continuous
agreement rules that satisfy IIA are the max and the min functions.

Theorem 4. Let F : I ×I →I be a bivariate map. Then the following conditions
are equivalent:

(i) F is continuous and satisfies IIA.
(ii) F is of one of the following forms:

(1) F(x,y) = x, for every x,y ∈I .
(2) F(x,y) = y, for every x,y ∈I .
(3) F(x,y) = max{x,y}, for every x,y ∈I .
(4) F(x,y) = min{x,y}, for every x,y ∈I .

Proof. It is straightforward to see that (ii) implies (i).
To prove the converse implication, (i) implies (ii), let F : I ×I → I be a

continuous bivariate map which satisfies IIA. Let x ∈ I be fixed and consider the
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vertical restriction Fx. Since F satisfies IIA, Fx(y) ∈ {x,y} for all y ∈I . The conti-
nuity of Fx, together with IIA, clearly implies that Fx must be of one of the following
types:
(1) Fx(y) = x, for every y ∈I .
(2) Fx(y) = y, for every y ∈I .
(3) Fx(y) = y, if y≥ x and Fx(y) = x, if y < x.
(4) Fx(y) = x, if y≥ x and Fx(y) = y, if y < x.

Now, the continuity of F (in two variables) clearly implies that if for some x0 ∈
I , Fx0 is of the type (i), i= 1 to 4, then Fx is of the type (i), for all x ∈I . Finally,
it is straightforward to see that the situation for each of the four cases leads to the
corresponding functional form given in the statement of the theorem.

As a direct consequence of Theorem 4 we obtain the following corollary.

Corollary 4. Let F : I ×I →I be a bivariate map. Then the following conditions
are equivalent:

(i) F is continuous, anonymous and satisfies IIA.
(ii) Either F(x,y) = max{x,y} (for all x,y ∈ I ), or F(x,y) = min{x,y} (for all

x,y ∈I ).

Remark 12. Theorem 4 strongly depends on the independence of irrelevant alter-
natives (IIA) condition imposed to F , since there are continuous bivariate maps
F : I ×I → I which satisfy consensus other than those belonging to the four
types that appear in the statement of the theorem (for details, see [13]).

5 Extending the consensus equation to a multivariate context

Until now we have studied the consensus equation that involves only two factors in
its definition. We now explore the extended consensus equation which means that
we are going to consider the n-factors (or n-individuals) case. To that end, the next
notation and definition are in order.

Notation. Let X be a set and let n ∈ N. Let us denote by Xn the n-fold Cartesian
product of X and consider a n-variate map F : Xn → X . Let x= (x j) j∈N ∈ Xn. In
order to make the notation as simple as possible, let us denote by xF ∈ Xn any of the
2n elements of Xn derived from x in the following way: For every j ∈ N, xF

j = x j,
or F(x).

Definition 8. A n-variate map F : Xn→ X is said to satisfy the extended consensus
equation if F(xF) = F(x), for every x∈ Xn.

The following result states that if a n-variate unanimous map satisfies extended
consensus then it can be fully described by a family of (n−1)-variate maps that sat-
isfy extended consensus too, together with a kind of (weak) unanimity. So, the entire
description of the class of bivariate maps that satisfy consensus is important since it
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allows us to also describe those that satisfy extended consensus for any number of
factors (agents). Before presenting the result let us introduce the following notation.

Notation. Let x∈ Xn, j ∈ N and z ∈ X be given. Then by x+ j(z) we mean the
following element of Xn+1: x+ j(z) = (x+ j(z))k = xk, if k < j, or z, if k = j, or xk−1,
if k > j. In words, the j− 1 first components of x+ j(z) are the same as those of x,
the j-th component is z and the remaining components are those of x shifted one
place on the right. Let now x∈ Xn and j ∈ N be given. Then x+ j will denote the
element of Xn−1 obtained by removing from x the j-th component while keeping
the remaining components equal to those of x.

In addition, 1n will denote the vector of Rn with all the coordinates equal to one.
Similarly, for any x ∈ X given, x1n will stand for the element of Xn with all the
components equal to x. Let F : Xn → X be a n-variate map. For every x ∈ X and
j ∈ N, denote by F j

x the (n−1)-variate map defined as follows: F j
x (z) = F(z+ j(x)),

for every z∈ Xn−1.
Once the above tedious notation has been introduced we are ready to offer the

main result of this section.

Theorem 5. A n-variate unanimous map F : Xn→ X satisfies the extended consen-
sus equation if and only if F j

x does (for every x ∈ X, j ∈ N).

Proof. Suppose first that F fulfils consensus. Let x ∈ X and j ∈ N be given and
consider the (n−1)-variate map F j

x . Assume, without loss of generality that j = 1.

Then, for every z∈ Xn−1, it follows that F j
x (zF j

x ) = F(zF j
x

+ j(x)) = F(z+ j(x)) = F j
x (z),

since F satisfies consensus. So, F j
x fulfils consensus.

Conversely, assume now that, for each x ∈ X and each j ∈ N, F j
x satisfies con-

sensus and let us prove that so F does. To that end, let x∈ Xn be fixed and consider
any of the 2n elements xF ∈ Xn, as defined above. We distinguish between the two
following cases: (i) There is at least one component of xF , say xF

j ∈ N, which is
different from F(x), or (ii) All the components of xF are F(x). If (i) occurs, then
F(xF) = F j

x j(xF
− j). Now observe that, for each k ∈ N \ {1}, the k-th component of

xF
− j is equal to xk or equal to F(x). So, since F(x) = F j

x j(x− j) and, by hypothesis,

F j
x j satisfies consensus, it turns out that F(xF) = F j

x j(xF
− j)

F j
x j = F(x). If (ii) happens,

then the fact that F(F(x1n)) = F(x) follows from the unanimity of F . So, the proof
is ended.

Remark 13. It is interesting to study the functional form the of the unanimous n-
variate maps that, in addition to fulfil the consensus equation, also satisfy natural
conditions like anonymity or continuity. For the particular case X = R, the class
of unanimous n-variate maps that fulfil consensus plus continuity is closely related
to the class of lattice polynomial functions (see [23] for a thorough discussion of
these functions). Indeed, it is not difficult to see that a lattice polynomial function
in Rn satisfies consensus, unanimity and continuity. Nevertheless, the class of real-
valued functions defined on Rn that satisfy consensus, unanimity and continuity is
larger than the class of lattice polynomial functions as the next example shows. Let
F : R2→R be the function given by: F(x,y) = x, if y≤ 1 and x≥ y, or F(x,y) = x, if
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y≤ 1 and x≤ y, or F(x,y) = x, if y≥ 1 and x≥ 1, or F(x,y) = 1, if y≥ 1 and x≤ 1.
Then it is straightforward to see that F so-defined satisfies consensus, unanimity
and continuity. Actually, it can be shown that F(x,y) =max{x,min{y,1}}.

If anonymity is added to the previous discussion then the class of lattice polyno-
mial functions reduces to the so-called order statistics functions (for a discussion of
this latter family, see also [23]). We conjecture that the class of real-valued functions
defined on Rn that satisfy consensus, unanimity, anonymity and continuity agrees
with the family of order statistics functions.

6 Further comments

One of the achievements in [13] is showing that under unanimity plus anonymity, a
new functional equation for bivariate maps (namely, the so-called equation of con-
sensus, also analyzed in the present manuscript), is indeed equivalent to a weaker
version of the associativity equation.

Throughout the present paper, we have not intended to solve the functional equa-
tion of consensus in the general case of bivariate maps F defined on a nonempty set
X . Indeed, we may observe that the even more restrictive condition of associativity
leads to a too wide set of possible solutions. In this direction, a glance at [3] may
give us an idea of how large could be the set of solutions, even in relevant particular
cases (e.g. : X = R or X = [0,1]).

In what concerns the consensus equation, it is important to point out that, under
unanimity plus anonymity, any finite sequence of applications of F in which only
the elements x,y ∈ X are involved2 always leads to F(x,y). Viewing F(x,y) as an
agreement rule defined by means of a binary operation ∗F on X (i.e. F(x,y) = x∗F y,
for every x,y ∈ X), the algebraic structure (X ,∗F) could be understood as being a
weakening of the notion of a semigroup, that is called a magma in the specialized
literature. This magma, namely the set X matched with the operation ∗F , has the
aforementioned property of simplification for finite sequences. (See [13] for further
details).

In particular cases the operation ∗F is semi-latticial. In other special cases, it is
a selector. And in some more restrictive cases, it corresponds to the idea of tak-
ing a maximum as proved in Corollary 4 above. Obviously, this fact of “taking a
maximum” strongly agrees with the underlying idea of “reaching the best possible
agreement” or “selecting the best possible option” commonly encountered in any
process of aggregation of individual alternatives into a social one, typical of a wide
variety of Social Choice contexts.

2 An example could be (((y∗F ((x∗F y)∗F x))∗F (y∗F x))∗F (y∗F y))∗F x.
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