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Abstract We analyze the numerical representability of total preorders defined on
semitopological real algebras through continuous order-preserving real-valued func-
tions that are also additive and multiplicative. The results obtained are used to inter-
pret important concepts arising in Social Choice theory.


Keywords Totally preordered topological spaces · Continuous numerical
representations of total preorders · Totally preordered algebraic structures ·
Semitopological real algebras · Social Choice theory


Mathematics Subject Classifications (2010) Primary 54F05; Secondary 06F25


1 Introduction


The aim of the present note is to study, on totally preordered topological vector
spaces, the existence of continuous numerical representations through real-valued
order-preserving functions that are, in addition, algebraic homomorphisms.


This framework extends in a natural way classical results [32] as well as more re-
cent contributions [8, 23, 26, 37] arising in the literature concerning continuous nu-
merical representations of totally preordered topological spaces endowed with some
additional compatible algebraic structure.
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In the classical works concerning ordered structures, one can find literature on
orderings compatible with algebraic structures (see e.g. [6, 29]). Several of the classi-
cal sources include also some results concerning the existence of real-valued order-
preserving numerical representations, but not paying attention to continuity. As a
matter of fact, the papers devoted to topological spaces endowed with continuous or-
derings and compatible algebraic structure are scarce and they are mainly related to
some kind of applications (e.g., in expected utility theory in Economics or Decision-
Making, see [4, 28]). It is also noticeable that algebraic techniques have also recently
been introduced in the search for classical numerical representations of totally pre-
ordered structures, as well as some other kinds of orderings, in a unified way (see e.g.
[10, 11]).


A different but complementary set of results that share the idea of dealing with
topological spaces endowed with a continuous ordering and a compatible algebraic
structure relates to ordered topological groups and semigroups (see e.g. [16, 17, 22,
38]). Indeed, in several of these situations there are theorems of automatic continuity:
to put an example, any translation-invariant linear order defined on a group is
continuous as regards the order topology, and a group endowed with a translation-
invariant total (linear) order is actually a topological group with respect to the order
topology (see [38] for further details).


Another kind of algebraic structures on which the study of continuous numer-
ical representability of total preorders through real-valued order-preserving func-
tions that are also algebraic homomorphisms is the category of totally preordered
topological vector spaces. Apart from the classical studies devoted to applications
into Economics (e.g. in expected utility theory) some theoretical papers have also
appeared in this literature (see e.g [21]). As a matter of fact, the problem concerning
the existence of a continuous representation of a preordered topological vector space
was already analyzed in the literature in the case that the preorder is not necessarily
total (see [12]).


In the present work the main novelty with respect to the most recent literature is
the analysis of numerical representations that are continuous, linear and multiplica-
tive. This implies that the totally preordered topological vector space is endowed
with an additional binary relation, say ∗, that is also compatible with the given pre-
ordering. Therefore our framework throughout the paper is the category of totally
preordered semitopological real algebras.


An underlying motivation to study these kind of structures comes from applica-
tions in Economics and Social Sciences: Indeed, linear (or at least additive) real-
valued order-preserving functions defined on totally preordered topological vector
spaces arise in a natural way when considering models involving risk situations
(expected or subjective utility theory) as mentioned above.


However, as a counterpart to linear representability, there are some other situa-
tions (arising mainly in R


n but extendable to a wider family of structures) where a
new binary operation plays a role, and consequently multiplicative real-valued order-
preserving maps are necessary. This class of real-valued order-preserving functions
can be often encountered in Measurement theory, Psychology and Economics (see,
e.g., [1, 20, 35]). In contexts coming from Economics, a typical example is the set of
Cobb-Douglas functions defined on R


n (see e.g., [20], p. 156), that are multiplicative
(but unfortunately, they may fail to be additive). Another typical situation appears
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when preferences over elements of R
n are involved in a way in which an element


(x1, x2, . . . , xn) ∈ R
n is understood as a commodity bundle or a “basket of goods”,


so that if the basket (x1, x2, . . . , xn) is preferred to the basket (y1, y2, . . . , yn) ∈ R
n,


then for every coordinatewise change of scale the preference is kept: that is, if
α1, α2, . . . , αn are strictly positive real numbers, the basket (α1x1, α2x2, . . . , αnxn)


should be preferred to the basket (α1 y1, α2 y2, . . . , αn yn). From a purely abstract point
of view, the basket (α1x1, α2x2, . . . , αnxn) appears as a coordinatewise product (say ∗)
defined on R


n as follows (x1, x2, . . . , xn) ∗ (α1, α2, . . . , αn) = (α1x1, α2x2, . . . , αnxn),
so that it seems natural to look for some multiplicative real-valued order-preserving
map to represent the preference.


Thus, it seems mandatory to prepare a new sets of results concerning the contin-
uous numerical representability of total preorders defined on these ‘‘richer” struc-
tures, namely the semitopological real algebras, through real-valued order-preserving
maps that are linear and multiplicative.


This is the objective of the present paper, whose structure goes as follows: After
the Introduction and a section on previous definitions and notations, we study (in
Section 3) conditions that characterize the existence of continuous real-valued order-
preserving maps that are linear and multiplicative and represent total preorders
defined on a semitopological real algebra. Finally, in Section 4 we add further
theoretical results in this direction, but this time inspired by contexts coming from
Social Choice theory.


2 Previous Definitions and Notations


Throughout the paper, � will denote a total preorder defined on a (nonempty) set
X, i.e., a binary relation on X which is ref lexive (x � x for all x ∈ X), transitive (x �
y, y � z implies x � z), and total (either x � y or y � x for every x, y ∈ X). We
also say that (X,�) is a totally preordered set. Two elements x, y ∈ X are said to
be indif ferent if x � y and y � x (briefly, x ∼ y). If, in addition, � is anti-symmetric
(x � y and y � x implies x = y), then � is said to be a total order.


Given a total preorder �, we consider as usual the asymmetric binary relation ≺ on
X defined as: x ≺ y if and only if not (y � x). The preorder � is said to be non-trivial
if there are x, y ∈ X such that x ≺ y. We also consider the symmetric binary relation
∼ on X given by x ∼ y ⇐⇒ (x � y) ∧ (y � x), x, y ∈ X.


Remark 2.1 In contexts coming mainly from applications in Economics or Social
Choice, it is common to use the term “preference” to deal with a total preorder �. As
a matter of fact, in those contexts, a total preorder � is known as a weak preference
(or large preference) whereas its associated asymmetric part ≺ is known as the strict
preference and the symmetric part ∼ is called the associated indif ference, which is an
equivalence relation.


Let (X,�) be a totally preordered set. A real-valued function u : X → R is said to
be order-preserving (also known as a utility function or numerical representation) for
� if, for every x, y ∈ X, it holds that x � y ⇐⇒ u(x) ≤ u(y). The total preorder � is
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said to be representable if it admits a real-valued order-preserving (utility) function.
(Several characterizations of the representabiity of total preorders may be seen in
[13], pp. 1–48.)


We now introduce two important definitions in the context of real vector spaces
endowed with a total preorder.


In what follows (X,+, ·), or simply X, will denote a real vector space. The zero
vector in X will be denoted by 0.


Definition 2.2 A total preorder � defined on X is said to be:


(1) translation-invariant (see [4]), or compatible with the operation +, if x � y
implies x + z � y + z, (x, y, z ∈ X),


(2) homothetic if x � y implies λ · x � λ · y, (x, y ∈ X, 0 ≤ λ).


Definition 2.3 The structure (X,�,+, ·) is said to be a totally preordered real vector
space if (X, +, ·) is a real vector space and � is a total preorder on X that satisfies
properties (1) and (2) above.


Definition 2.4 A function v : X −→ R is said to be additive if v(x + y) = v(x) + v(y),
(x, y ∈ X), and it is said to be linear if v(λ · x + β · y) = λv(x) + βv(y), (x, y ∈ X,
λ, β ∈ R).


Let us now consider some topological properties of total preorders defined on
a topological space. We introduce the most common notion of continuity in this
context.


Definition 2.5 Let (Z , τ ) be a topological space. A total preorder � defined on Z is
said to be continuous if, for every x ∈ Z , the lower and the upper contour sets L(x) =
{y ∈ Z ; y � x} and G(x) = {y ∈ Z ; x � y}, respectively, are τ -closed subsets of Z .


Recall that a topological space (Z , τ ) is connected if it cannot be written as the
disjoint union of two non-empty open subsets. It is said to be separable if it contains
a countable dense subset.


The next fundamental result will be used in the sequel. It provides topological
conditions for a continuous total preorder defined on a topological space to admit
a continuous real-valued order-preserving (utility) function. It is known as the
Eilenberg representation theorem (see [25]).


Theorem 2.6 Let (Z , τ ) be a connected and separable topological space and let �
be a continuous total preorder on Z . Then there is a continuous real-valued order-
preserving (utility) function that represents �.


Let us come back to our algebraic setting (X,+, ·). In order to consider topological
properties of total preorders defined on X we need X to be endowed with a topology,
say τ . Because it is our aim to obtain a particular representation (e.g., linear and
continuous) of total preorders it is natural to assume some kind of relationship of
compatibility between the operations + and · and the topology τ . In particular, it will
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be assumed in the sequel that (X, τ,+, ·) is a topological real vector space (For an
extensive treatment of the theory of topological vector spaces see, e.g., [40]).


Remark 2.7 The structure (X,�, τ,+, ·) is said to be a totally preordered topological
real vector space if, both, (X,�,+, ·) is a totally preordered real vector space and
(X, τ,+, ·) is a topological real vector space. In other words, the total preorder �
is compatible with the binary operation (+) and the external operation (·), and the
algebraic operations are continuous (considering on X the given topology τ , on the
real line R the usual (Euclidean) topology and on X × X as well as on R × X the cor-
responding product topologies).


3 Representation Theorems for Total Preorders on Topological Vector Spaces


We begin this section by recalling two existing results involving conditions (1) and
(2) of Definition 2.2 above. Remember that a nonempty subset K ⊆ X of a real
vector space X is said to be a real cone if λk ∈ K, for every vector k ∈ K and every
non-negative scalar λ ≥ 0 ∈ R. A function v : K −→ R is said to be homogeneous if
v(λk) = λv(k), (k ∈ K, 0 ≤ λ).


The following theorem provides a characterization of the representability of a
total preorder defined on a cone of a topological real vector space by means of a
continuous and homogeneous real-valued order-preserving (utility) function.


Theorem 3.1 Let K be a real cone endowed with a total preorder � in a topological
real vector space X. Then, there is a continuous and homogeneous utility function
representing � if and only if � is homothetic and continuous.


Proof See [9], Corollary on page 297. �


For the case of totally preordered topological real vector spaces the following
characterization result is known.


Theorem 3.2 Let X be a a topological real vector space endowed with a total preorder
�. Then, there is a linear and continuous real-valued order-preserving (utility) function
representing � if and only if � is translation-invariant, homothetic and continuous.1


Proof See [23], Theorem on page 521. �


Remark 3.3 It should be noted that the proofs of both results above are based on the
solution of some functional equations; namely, the functional equation of homothe-
ticity (namely, f (x) = f (y) ⇐⇒ f (tx) = f (ty) or equivalently f (tx) = g(t, f (x)),


1Actually this result, as shown in [23], still holds under weaker conditions. Continuity can be
replaced by upper-semicontinuity at zero, which means that {x ∈ X; 0 � x} is a closed subset of X.
Homotheticity is then a consequence of upper-semicontinuity at zero and translation-invariance. It
should be noted that this remark also applies to Theorem 3.14 below. (See also [12] for other results
in this direction.)
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for every x, y ∈ X, t > 0 ∈ R, and g some function of two variables, see [18, 19, 27]
for further details), and the functional equation of translation-invariance (namely,
f (x) = f (y) ⇐⇒ f (x + z) = f (y + z), for every x, y, z ∈ X) respectively.


In addition to translation-invariance and homotheticity for �, we wish to
study the implications of introducing another invariance property, namely, that of
homogeneity with respect to a third operation, the product operation. This means
that our abstract real vector space X need to be equipped with an additional binary
operation, say ∗. If there are x, y ∈ X such that x ∗ y �= 0, then we will say that ∗
is non-zero. Otherwise, we will say that ∗ is zero (or trivial). We begin with a basic
definition.


Definition 3.4 A real algebra2 (X, +, ·, ∗) is a space X endowed with three binary
operations such that:


(i) (X,+, ·) is a real vector space.
(ii) (X,+, ∗) is a ring.3


(iii) λ · (x ∗ y) = (λ · x) ∗ y = x ∗ (λ · y), for all x, y ∈ X, for all λ ∈ R.


Let (X,+, ·, ∗), or simply X, be a real algebra. A function v : X −→ R is said to be
an algebra-homomorphism if it is linear and multiplicative (i.e., v(x ∗ y) = v(x)v(y),
(x, y ∈ X)).


Now we introduce the concept of a multiplicative total preorder defined on a real
algebra.


Definition 3.5 Let X be a real algebra. A total preorder � defined on X is said to
be multiplicative4 if x � y, implies z ∗ x � z ∗ y and x ∗ z � y ∗ z, for all x, y, z ∈ X
such that 0 � z.


Remark 3.6 A related concept was introduced, for the particular case of R
n, in [20],


Definition 4.6.


Next, we introduce the definition of a totally preordered real algebra.


Definition 3.7 A totally preordered real algebra5 (X,�,+, ·, ∗), or simply X, is a real
algebra (X,+, ·, ∗) equipped with a translation-invariant, homothetic and multiplica-
tive total preorder �.


2The reader will find the textbook of Hungerford [31] a useful reference for algebraic issues.
3Remember that a ring is a nonempty set R together with two binary operations (usually denoted
as addition (+) and multiplication) such that (R,+) is a group, and the following properties hold
for every a, b , c ∈ R: a + b = b + a, (ab)c = a(bc), and a(b + c) = ab + ac. (See e.g. [31], pp. 115
and ff.)
4If ∗ is zero, i.e., x ∗ y=0, for every x, y ∈ X, then every total preorder on X is trivially multiplicative.
5If a ring is equipped with a translation-invariant and multiplicative total preorder, then we reach
the notion of a totally preordered ring.
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If we consider now real algebras endowed with a topology, then we reach the
following key definition.


Definition 3.8


(i) A semitopological real algebra (X, τ,+, ·, ∗) is a real algebra (X,+, ·, ∗) such
that (X, τ,+, ·) is a topological vector space.


(ii) A totally preordered semitopological real algebra (X,�, τ,+, ·, ∗), or simply X,
is a topological vector space (X, τ,+, ·) endowed with both a total preorder �
and a binary operation ∗ such that (X,�,+, ·, ∗) is a totally preordered real
algebra.


Remarks 3.9


(i) Notice that, in the previous Definition 3.8 (i) no assumptions involving
topological considerations are made on ∗. If ∗ is also a τ -continuous binary
operation, then the structure (X, τ,+, ·, ∗) is said to be a topological real
algebra.


(ii) The structure (X,�, τ,+, ·, ∗) is said to be a totally preordered topological
real algebra (respectively, a totally preordered semitopological real algebra) if
(X, τ,+, ·, ∗) is a topological (respectively, semitopological) real algebra and
(X,�, +, ·, ∗) is a totally preordered real algebra.


(iii) It should be pointed out that, sometimes in the literature and unlike our notion,
the concept of a semitopological real algebra requires the operation ∗ to be
separately continuous (that is, the structure (X, τ,+, ·, ∗) satisfies that for any
fixed a ∈ X it holds that the map p : X → X given by p(x) = a ∗ x, x ∈ X is
τ -continuous. See, e.g., [42]). By the way, in this case the nomenclature “topo-
logical real algebra” is kept for a structure (X, τ,+, ·, ∗) such that the operation
∗ is jointly continuous (that is, the map q : X × X → X given by q(x, y) =
x ∗ y, x, y ∈ X is continuous considering on X the topology τ and on X × X
the corresponding product topology τ × τ ).


Within this formal context, we can state the concept of a straight total preorder.


Definition 3.10 Let X be a semitopological real algebra. A total preorder � defined
on X is said to be straight if there is a continuous real-valued order-preserving
(utility) function for � which is an algebra-homomorphism.


Remark 3.11 We use here the term “straight” because � actually plays a role similar
to the usual Euclidean order ≤ on the straight (real) line R endowed with its usual bi-
nary operations of addition or sum (+) and multiplication (·). It is plain that (R,+, ·)
is indeed a topological real algebra.


Before presenting our main result in this framework, we need a preliminary
lemma.
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Lemma 3.12 Let ∗ be a binary operation def ined on R and let � be a continuous total
order such that (R,�, +, ∗) is a totally ordered ring (i.e. (R,+, ∗) is a ring and � is
translation-invariant and multiplicative).


(i) If ∗ is non-zero, then � has a continuous representation which, in addition, is
additive and multiplicative.


(ii) If ∗ is zero, then � has a continuous and additive representation.


Moreover, if ∗ is non-zero, then there exists a ∈ R \ 0 such that x ∗ y = axy, for all
x, y ∈ R.


Proof Since � is continuous on R it follows, by the Eilenberg representation the-
orem, that there exists a continuous real-valued order-preserving (utility) function
u : R −→ R for �. Moreover, since � is a total order, u is injective (actually, it
is an homeomorphism). This, in particular, implies that (R,�, +) is Archimedean
(i.e., if 0 ≺ a ≺ b , then there is n ∈ N such that b ≺ na). Now, by a result of Pickert
and Hion (see [29], Th. 1, p. 126), either ∗ is zero and then there is an additive
numerical representation of �, say w, or � has a numerical representation, say v,
which is additive and multiplicative. Then, since u is continuous and injective, it is
either a strictly increasing or a strictly decreasing function. Assume that it is strictly
increasing, the other case being analyzed similarly. Suppose that ∗ is non-zero. Then,
since u and v are real-valued order-preserving (utility) functions for �, v is also
strictly increasing. Now, remember that v is an additive function and it is well known
that if v is discontinuous at some point, then it is discontinuous at every point of
R (see e.g. [7], pp. 125 and ff.). This last fact, v being increasing, leads to v(x) = ax
(with a > 0). If ∗ is zero, then the same argument as above leads to the same kind of
representation for �, i.e., w(x) = ax (with a > 0) and we are done. To prove the last
assertion of the statement of Lemma 3.12 notice that, since ∗ is non-zero, for every
x, y ∈ R, it holds that v(x ∗ y) = a(x ∗ y) = v(x)v(y) = a2xy. Therefore, x ∗ y = axy
for every x, y ∈ R and the proof is finished. �


Remark 3.13 If we use semicontinuity instead of continuity it could be possible to
consider order-preserving functions that take values on the set of rational numbers Q.
(See [15] for details).


We are now ready to introduce our main characterization result.


Theorem 3.14 Let X be a semitopological real algebra endowed with a total pre-
order �.


(i) If ∗ is non-zero, then � is straight if and only if it is continuous, translation-
invariant, homothetic and multiplicative.


(ii) If ∗ is zero, then � has a linear and continuous numerical representation if and
only if it is continuous, translation-invariant and homothetic.


Proof It is straightforward to prove the “only if” part of statements (i) and (ii). In
order to prove the “if” part, we first consider the case that ∗ is non-zero. Thus, we
have to show that there is a continuous, linear and multiplicative representation ψ :
X −→ R for �. If � is trivial (i.e., x ∼ y, for every x, y ∈ X), then ψ ≡ 0 works.
Suppose then that � is non-trivial and consider the set I(0) = {x ∈ X; x ∼ 0}. First,
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let us see that I(0) is both a vector subspace and an ideal6 of X, for which we need
to prove the following two properties:


(a) I(0) is a real vector subspace of X.
(b) For every x ∈ I(0), y ∈ X, it holds that x ∗ y ∈ I(0) and y ∗ x ∈ I(0).


Let x, y ∈ I(0). Because � is translation-invariant, it follows that x + y ∼
x + 0 ∼ x ∼ 0. So, in order to prove (a), it is sufficient to see that, given x ∈ I(0)


and λ ∈ R, then λ · x ∼ 0. If λ ≥ 0 then, by homotheticity, λ · x ∼ 0. If λ < 0, then
(−λ) · x ∼ 0. But (−λ) · x = −λ · x and, by translation invariance of �, λ · x ∼ 0.


To prove (b), let y ∈ X and x ∈ I(0). If 0 � y then, since � is multiplicative, x ∗
y � 0 ∗ y = 0 and 0 = 0 ∗ y � x ∗ y. Therefore, x ∗ y ∼ 0. If y � 0, then 0 � −y and
so −x ∗ y ∼ 0. Because x ∗ y = −(−x) ∗ y, and I(0) is a vector subspace of X, it holds
that x ∗ y ∼ 0. The case y ∗ x is similar. Thus (b) holds and therefore I(0) is an ideal
of X.


Now, consider the quotient space X/I(0) and denote it by Q. Because Q coincides
with the quotient space X/ ∼, Q is a totally ordered set. We denote the natural
total order on Q by �′


. Since I(0) is both a vector subspace and an ideal of X, the
operations +, ·R and ∗ pass to the quotient space in such a way that �′


, defined on
Q, is also translation-invariant, homothetic, and multiplicative. Consider on Q the
quotient topology, denoted by τ ′, and remember that (Q, τ ′, +, ·) is a topological
vecor space which is separated (or Hausdorff) since I(0) is a closed subset of X
because � is continuous (see, e.g., [40]). Moreover, �′


is clearly a τ ′-continuous total
order on Q. Let us observe that (Q, τ ′,+, ·) is homeomorphic, and isomorphic as a
vector space, to R endowed with the usual Euclidean topology and ordinary binary
operations. Suppose, by way of contradiction, that this claim is not true. If this the
case, then the algebraic dimension of Q is greater than 1. Denote by S ⊆ Q a two-
dimensional subspace of Q. Then, it is well-known that the restriction of τ ′ to S
induces the Euclidean topology on S (see, e.g., [2], Theorem 5.65). In particular, S is
a connected and separable topological space endowed with a continuous total order
�′ |S, the restriction of �′


to S. Then, by the Eilenberg representation theorem, there
is a continuous real-valued order-preserving (utility) function, say v : S → R, that
represents �′ |S. Notice that such a function is injective since �′ |S is total. But it is not
possible since, for a given s ∈ S, the set S \ {s} is connected in S and v(S \ {s}) is not
connected in R, which contradicts the continuity of v. So, Q is homeomorphic, and
isomorphic as a vector space, to the reals. Now, by Lemma 3.12, there is a continuous
representation u : Q → R for �′


, which is linear and multiplicative. Let us denote by
p : X → Q the projection map. It is easy to see that p is linear, multiplicative and
continuous. Then, by considering the composition ψ = u ◦ p : X → R we obtain a
continuous, linear and multiplicative real-valued order-preserving (utility) function
which represents � and therefore we have proved statement (i).


Suppose now that ∗ is zero. In this case we have to show that there is a linear
and continuous representation ψ : X −→ R for �. If � is trivial, then ψ ≡ 0 works.
Otherwise, we argue exactly as above by considering the set I(0). Notice that now
I(0) is just a closed real vector subspace of X. Following the same reasoning as above
(notice that Lemma 3.12 also covers the case in which ∗ is zero), we obtain a linear


6Let (X,+, ∗) be a ring. A subset I ⊆ X is said to be an ideal of X if (I,+) is an additive subgroup
of X and a ∗ x, x ∗ a ∈ I, for every a ∈ I, x ∈ X.
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and continuous representation u : Q → R for �′
. The desired linear and continuous


representation ψ for � is obtained by taking the composition of u with the projection
map p : X → Q. �


As a consequence of the previous theorem the following information can be
added.


Corollary 3.15 If X is a Banach algebra and ∗ is non-zero, then the set of all
translation-invariant, homothetic, multiplicative and continuous total preorders on X
can be identif ied with the spectrum of X.7


Remarks 3.16


(i) Statement (i) of Theorem 3.14 above can be rephrased as follows. Let
(X, τ,+, ·, ∗) be a semitopological real algebra and let � be a total preorder on
X. Then, (X,�, τ,+, ·, ∗) is a totally preordered semitopological real algebra if
and only if � is straight.


(ii) Theorem 3.14 can be understood as a natural generalization of Theorem 3.2
above.


We now provide some application of the previous theorem to the context of
infinite-dimensional spaces with a Schauder basis. First, let us state some definitions.


Definition 3.17 Let (X, τ,+, ·) a topological real vector space. A sequence (e j)
∞
j=1 ⊂


X of (finitely) linearly independent vectors of X is said to be a Schauder ba-
sis if, for every x ∈ X, there are numbers (x j)


∞
j=1 ⊂ R such that x = ∑∞


j=1 x je j =
limn→∞


∑n
j=1 x je j.


Remarks 3.18


(i) It sould be noted that a topological real vector space with a Schauder basis is
necessarily separable. (See e.g. [2], p. 498).


(ii) It is very simple to see that if (e j)
∞
j=1 is a Schauder basis of X then for every


x ∈ X the coefficients (x j)
∞
j=1 are uniquely determined. So, for every x ∈ X, we


can write x = (x j).


Definition 3.19 A Schauder basis (e j)
∞
j=1 of a semitopological real algebra


(X, τ,+, ·, ∗) is said to be multiplicative if e j ∗ ei is equal to e j whenever i = j, and
it is equal 0 otherwise.


Remarks 3.20


(i) If (e j)
∞
j=1 is a multiplicative Schauder basis of X then, for every j ∈ N, the linear


operator x ∈ X → ψ(x) = x je j ∈ X is multiplicative and conversely.


7The spectrum of a Banach algebra is defined as the set of all its multiplicative linear functionals.
For details about Banach algebras, see [39]. Some results on real-valued order-preserving (utility)
functions on Banach spaces and, in particular, Banach algebras may be seen in [14].
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(ii) If (e j)
∞
j=1 is a multiplicative Schauder basis of a topological real algebra X then,


for every x, y ∈ X, x ∗ y = ∑∞
j=1 x jy je j.


We then reach the following result.


Theorem 3.21 Let (X, τ,+, ·, ∗) be a semitopological real algebra with a multiplica-
tive Schauder basis (e j)


∞
j=1 and let � be a non-trivial total preorder def ined on X. Then


the following assertions are equivalent:


(i) � is translation-invariant, homothetic, multiplicative and continuous,
(ii) � is straight,


(iii) There is i ∈ N, such that, for every x = (x j), y = (y j) ∈ X, it holds that x � y if
and only if xi ≤ yi.


Proof (i) implies (ii) follows from Theorem 3.14. (iii) implies (i) is routine. So, it
remains to prove (ii) implies (iii). To that end, let ψ : X → R be a continuous, linear
and multiplicative real-valued order-preserving (utility) function that represents �.
Since ψ is linear and continuous, it holds that ψ(x) = ∑∞


j=1 x jψ(e j), (x ∈ X). Notice
that all, but at most one, numbers ψ(e j) are zero. Indeed, suppose by way of
contradiction that there exist i �= j such that ψ(ei)ψ(e j) �= 0. Then, because ψ is
multiplicative as well as the basis (e j) is, 0 = ψ(0) = ψ(ei ∗ e j) = ψ(ei)ψ(e j), which
is a contradiction. So, there is i ∈ N such that, for every x ∈ X, ψ(x) = xiψ(ei).
Moreover, since ψ(e2


i ) = ψ(ei)ψ(ei) = ψ(ei) and � is non-trivial, it follows that
ψ(ei) = 1. Therefore, ψ(x) = xi, for every x ∈ X, and we are done. �


4 Further Results Inspired by Contexts Related to Social Choice


In this section we intend to explain, interpret and reinforce the results obtained in the
formal framework considered in the previous section, as well as to obtain new ones,
having in mind some key contexts that arise in the Social Choice theory framework.
Although we introduce in this section a new set of pure mathematical results, we
motivate them by explaining how the inspiration can be encountered in some Social
Choice contexts, and, in addition, to what extent these new results obtained are
useful to deal with important concepts coming from Economics, Social Choice and
Decision-Making.


Thus, one of the most important issues in the Social Choice theory has to do with
the problem of aggregating individual judgments or opinions into a social one. To be
more precise, suppose that a society with n individuals (n ≥ 2) is given. Suppose in
addition that each individual has a (preference) ranking over a set of m candidates
(m ≥ 2), say X. The preference of each individual turns out to be a total preorder
over X. Denote the set of all total preorders, or preferences, defined on X by P.
The aggregation problem consists in finding functions F : Pn = P × · · · × Pn−times →
P which satisfy certain properties of, say, common sense. For a given profile of
individual preferences (pj) = (p1, · · · , pn) ∈ Pn, the element F((pj)), or to make
the notation easier just F(pj), is interpreted as the social preference associated to
it. Also, for a given p ∈ P, ps will denote the asymmetric binary relation, called the
strict preference, associated to p. Similarly, for a given profile (pj) ∈ Pn, F(pj)s will
denote the asymmetric binary relation associated to F(pj).
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Two typical (and classical in the Social Choice literature) properties for an
aggregation function to be satisfied are the following ones:


(i) Pareto property: For any preference profile (pj) ∈ Pn and any pair of alterna-
tives x, y ∈ X if xpj s y, for all j ∈ {1, · · · , n}, then xF(pj)s y,


(ii) Independence of irrelevant alternatives condition: For any pair of preference
profiles (pj), (q j) ∈ Pn and any pair of alternatives x, y ∈ X such that for all
j ∈ {1, · · · , n}, xpjy ⇐⇒ xq jy and ypjx ⇐⇒ yq jx, it follows that xF(pj)y ⇐⇒
xF(qj)y and yF(pj)x ⇐⇒ yF(qj)x.


Roughly speaking, Pareto property says that if, for a given profile (pj) ∈ Pn, all
individuals (strictly) prefer candidate a to candidate b , then the social preference
associated to that profile, F(pj), also (strictly) ranks a over b . The independence
of irrelevant alternatives condition states that the way in which society ranks two
arbitrary candidates only depends upon the way in which individuals rank these two
candidates and nothing else.


This conceptual framework is called the Arrovian model in social choice theory
since [3]. Quite surprisingly, Arrow proved that if an aggregation function F with
n ≥ 2 individuals and m ≥ 3 candidates satisfies conditions (i) and (ii) above, then
it is dictatorial, which, roughly speaking again, means that there is an individual in
the society so that, in order to (strictly) rank the candidates, only her (his) opinion is
taken into account.


In a related context Sen [41] introduced the concept of a social welfare functional.
Suppose that each individual preference can be represented by an order-preserving
real-valued function (called in this literature, a utility function). Let us denote by
U the set of all (utility) functions defined on X. Then, any aggregation function F :
Pn → P induces in a natural way a so-called social welfare functional G : Un → P
by letting G((u1, · · · , un)) = F((p1, · · · , pn)), where, for every i ∈ {1, · · · , n}, pi ∈ P
is the preference relation associated to ui. It is very easy to see that G is well-defined.
What is really important in this approach is that if n ≥ 2, m ≥ 3 and F satisfies
conditions (i) and (ii) of the Arrovian model, then there is a total preorder, say �,
defined on R


n so that all the information given by G is conveyed by � (for details,
see [30]). So, from this perspective, for a given total preorder � defined on R


n, or
other spaces with interpretation in Economics, it is interesting to obtain conditions
that characterize when the preorder � is dictatorial.


In this sense, we provide in this section an algebraic characterization of this fact. In
addition, we also offer new insights of this theory in a more general context involving
infinite-dimensional sequence spaces.


Definition 4.1 A total preorder � defined on R
n is said to be one-dimensional (or


strongly dictatorial) if there is i ∈ {1, 2, · · · , n}, such that, for every x = (x j), y =
(y j) ∈ R


n, it holds that x � y if and only if xi ≤ yi.


Remarks 4.2 In a mathematical context, we would use the nomenclature “one-
dimensional” because the preorder � despite being defined on R


n for some n that is
(usually) bigger than 1, acts as if it were defined only on just one coordinate. Never-
theless, in contexts coming from Social Choice the terminology “strongly dictatorial”
seems to be more suitable and, as a matter of fact, common.
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Let us consider R
n endowed with the usual operations +, · and ∗, defined coordi-


natewise, and the usual Euclidean topology τ . Then we reach the following charac-
terization of those total preorders which are one-dimensional (strongly dictatorial).


Theorem 4.3 Let � be a non-trivial total preorder def ined on R
n. Then the following


assertions are equivalent:


(i) � is translation-invariant, homothetic, multiplicative and continuous,
(ii) � is straight,


(iii) � is one-dimensional (strongly dictatorial).


Proof It is a direct consequence of Theorem 3.21 above. Notice that the canonical
basis of R


n is a multiplicative Schauder basis. �


Remarks 4.4


(i) The previous result can be restated as follows: The only total preorders that
make (Rn, τ,+, ·, ∗) into a totally preordered topological real algebra are the
one-dimensional (strongly dictatorial) ones.


(ii) Theorem 4.3 also applies to the infinite-dimensional spaces c0 and l1 (see e.g.
[2], pp. 492–495) endowed with the usual operations defined coordinatewise.
As in the Euclidean case, the multiplicative Schauder basis is the correspond-
ing canonical basis. The c0 space consists of all real sequences which vanish at
infinity equipped with the topology given by the supremum norm (‖(xn)‖∞ =
sup{|xn|; n ∈ N}). It is easy to show that c0 is a semitopological real algebra (in
fact, it is a (Banach) topological real algebra). The space l1 consists of all real
sequences (xn) such that


∑ |xn| < ∞. Equipped with the topology given by the
norm defined as ‖(xn)‖1 = ∑ |xn|, l1 is a semitopological real algebra (in fact,
it is a (Banach) topological real algebra). Both spaces are usually encountered
in the economics literature related to general equilibrium theory in infinite-
dimensional context (see, e.g., [5]).


(iii) The existence of a multiplicative Schauder basis is crucial for the previous
theorem to hold. If such a basis does not exist then the conclusion can fail. This
claim occurs even though the space has a sequence structure. For instance,
consider the space X = l∞ which consists of all bounded real sequences.
This space naturally arises in intertemporal decision problems involving an
infinite horizon (see, e.g., [34]). Endowed with the usual operations defined
coordinatewise and the supremum norm, l∞ is a semitopological real algebra
(in fact, it is a Banach real algebra). In this case, the set of straight total
preorders strictly contains the set of strong dictatorial ones (i.e., those which
are defined as the projection over the corresponding coordinate). To better
illustrate this assertion, let us denote by β(N) the Stone-Čech compactification
of the set of the natural numbers N (see, e.g., [24]). Let p ∈ β(N) \ N. Then
the evaluation map at p defines a linear and multiplicative map x ∈ l∞ �
ep(x) ∈ R. Moreover, since (l∞, ‖ · ‖∞, +, ·, ∗) is a Banach algebra, it is well
known that every linear and multiplicative real-valued function is continuous
(see, e.g., [39]). Thus, the order �p defined on l∞ as x �p y ⇔ ep(x) ≤ ep(y) is
straight (and continuous). However, it is not a projection over any coordinate.
It should be noted that, from the point of view of an economic interpretation,
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�p suggests the presence of an invisible dictator (we mean, straight preorders
which are not one-dimensional (strongly dictatorial)). As far as we know the
concept of an invisible dictator was first introduced in [33]. On the one hand, in
the context of Kirman and Sonderman paper, invisible dictators are associated
to free ultraf ilters8 on N. On the other hand, it is well-known (see [24]) that the
set β(N) \ N can be identified with the set of free ultrafilters on N. Moreover,
it is also known in the theory of Banach algebras, that the set of (continuous),
linear and multiplicative real-valued functions defined on l∞ is β(N) (see, e.g.,
[39]). So, these existing links are the reason why we call �p, p ∈ β(N) \ N, an
invisible dictator.


Another interesting invariance property, involving the usual product operation
∗ in R


n, that appears in the economics literature is introduced in the following
definition. Given two vectors x = (xi), y = (yi) ∈ R


n, x ≤ y stands for the usual par-
tial order in R


n (i.e., x ≤ y iff xi ≤ yi, for all i ∈ N). In a similar way, “�” will stand
for the strict partial order in R


n (i.e., x � y iff xi < yi, for all i ∈ N).


Definition 4.5 A total preorder � in R
n is said to be scale-independent if x � y, 0 � z


implies z ∗ x � z ∗ y, (x, y, z ∈ R
n).


Roughly speaking, this condition means that particular reparametrizations of
the individual utilities do not change the preference relation. In other words, � is
invariant to independent changes of units in which, say, utility is measured. This
condition appears also in the theory of axiomatic bargaining to characterize Nash col-
lective social choice functions, (see [36]), as well as in the literature on interpersonal
comparability in Social Choice.


We now prove that both, scale-independence and the multiplicative property, are
very close to one another. First we need to introduce a definition.


Definition 4.6 A total preorder � in R
n is said to be increasing if x ≤ y implies x � y,


for all x, y ∈ R
n.


Theorem 4.7 Let � be a total preorder def ined on R
n. Assume that � is translation-


invariant and continuous. Then the following assertions are equivalent:


(i) � is multiplicative with respect to the usual coordinatewise product ∗ in R
n.


(ii) � is scale-independent and increasing.


Proof Suppose that � is non-trivial, since otherwise the result is obvious. Assume
then that it is multiplicative. Then, by Theorem 4.3, � is one-dimensional (strongly
dictatorial) and it follows easily that � is scale-independent and increasing. For
the converse, suppose that � is scale-independent and increasing. Then, since � is
translation-invariant and continuous, by Theorem 3.14 (ii) there is a numerical repre-
sentation ψ for � given by ψ(x1, . . . , xn) = ∑n


j=1 a jx j, for some a j ∈ R, j = 1, . . . , n.
It should be noted that a j ≥ 0, for all j because � is increasing. Let us see that
all, but at most one, coefficients a j are zero. Suppose, by way of contradiction,


8For information about ultrafilters and related items see e.g. [2] pp. 31 and ff.
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that there exist r �= s such that aras �= 0. Consider the vector x = (x1, . . . , xn) ∈ R
n,


defined as: xr = as, xs = −ar and x j = 0 otherwise. Note that ψ(x) = 0. Now, by scale-
independence, ψ(z ∗ x) = 0, for every z = (z1, . . . , zn) ∈ R


n such that 0n � z. But
this would imply that aras(zr − zs) = 0, for any such z. Choosing a suitable z such
that zr �= zs, we easily conclude that either ar = 0 or as = 0, which is a contradiction.
Hence, there is i ∈ {1, . . . , n} such that ψ(x1, . . . , xn) = aixi. In addition, since � is
non-trivial and increasing, it follows that ai > 0; hence � is one-dimensional (strongly
dictatorial). The result then follows from Theorem 4.3 again. �


Remarks 4.8 The assumption that � is increasing cannot be omitted from the state-
ment of the previous result. Indeed, consider the total order � on R defined as x � y
if and only if −x ≤ −y. It is very easy to see that � so-defined is translation-invariant,
homothetic, continuous and scale-independent. However, it is not increasing. Note
that it is not multiplicative since 0 ≺ −1 and 1 = −1 ∗ −1 ≺ 0.
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