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Abstract. We develop a theory of general quotients for W- and Cu-semigroups be-
yond the case of quotients by ideals. To this end, we introduce the notion of a normal
pair, which allows us to take quotients of W-semigroups in a similar way as normal
subgroups arise as kernels of group homomorphisms.

We use this to define the dynamical Cuntz semigroup as the universal object induced
from an action of a group G on a W-semigroup. In the C*-algebraic framework, under
mild assumptions, the universality of this dynamical invariant helps us tap into the
structure of the Cuntz semigroup of crossed product C*-algebras.

1. Introduction

In this paper we introduce for a class of continuous positively ordered monoids called
W-semigroups (along with a subclass called Cu-semigroups) a new concept of quotients,
different from classical quotients by ideals, by forming the quotient on the level of a
preorder relation. A need for forming such quotients naturally occurs if a group acts
on such a semigroup and we want to identify elements in an orbit, thereby obtaining a
new semigroup with a different order relation. Such a construction is not very hard to
do with ordinary positively ordered monoids, as the additive and order structures both
pass to quotients in a natural way, but for continuous positively ordered monoids it is
much more delicate, since the continuous structure demands extra care.

Our main motivation to develop this theory lies in the theory of operator algebras,
specifically, applications to the theory of the Cuntz semigroup, an invariant for C*-
algebras. These analytical objects, sometimes dubbed as noncommutative topological
spaces, have deep-rooted connections with topological dynamical systems, particularly
via the construction of crossed product C*-algebras; hence, our theory is, at a deeper
level, motivated by the need to understand topological (as well as C*-) dynamical sys-
tems and their crossed products.

It is worth pointing out that the Cuntz semigroup was originally introduced in [C78] as
a tool to study tracial states on C*-algebras (these are analogous to invariant measures
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on topological dynamical systems), and that the topological nature of C*-algebras gives
rise to the continuous structures on their Cuntz semigroups, on top of the structure of
positively ordered monoids. This continuous structure distinguishes Cuntz semigroups
from their more classical counterpart, namely the Murray-von Neumann semigroups.

Renewed interest in the Cuntz semigroups grew—and continues to this day, with grow-
ing momentum—since the discovery of their role in the celebrated Elliott classification
program of simple, amenable C*-algebras. Indeed, here the Cuntz semigroup first ap-
peared in an antagonistic role—as an invariant to help establish a counterexample to the
original classification conjecture [T08]. This landmark counterexample was a deciding
factor in shaping the revised form of the classification conjecture, which was eventually
verified in a series of groundbreaking articles [TWW17, GLN20a, GLN20b, EGLN15].
The Cuntz semigroup then plays two important roles in this and later developments:
First, it provides the framework to formulate the notion of strict comparison, a regular-
ity property for C*-algebras that serves as a prerequisite for classifiability in the revised
conjecture [TWW17]. Second, it has been useful in more recent developments aiming at
classifying C*-algebras beyond the revised conjecture ([APRT22, ELN24]), and it serves
as the framework to design novel invariants [AL23, AL24, AEL24].

Meanwhile, throughout the development of the Elliott classification program, inte-
ractions with topological dynamical systems have been an integral part of the theory.
It is often fruitful to analyze C*-algebraic properties and constructions through the
lens of dynamical systems. In particular, the question of characterizing classifiability
of crossed product C*-algebras in dynamical language has been and is under intensive
research. To this end, there appears to be a close relationship between strict comparison
and notions in topological dynamical systems such as the small boundary property and
mean dimension zero [KS20]. One of the main applications of the theory developed in
this paper is a notion of dynamical strict comparison and its close relation to a new
regularity condition for topological dynamical systems, almost elementariness, which we
will define and study in subsequent articles [BPWZ24a, BPWZ24b].

To describe what we do in more detail, we need to take a closer look at the theory
of Cuntz semigroups. It turns out that for each C*-algebra A, there are two intimately
related constructions, denoted by W(A) and Cu(A) respectively, each being useful in its
own right and commonly referred to as the Cuntz semigroup. To clarify the relationship
between the two, it is not enough to just treat these as positively ordered monoids — the
continuous structure is crucial. To this end, a theory of continuous (suitably interpreted)
positively ordered monoids has been established [CEI08, ABP11, APT18]. This theory
is centered around the category W of (abstract) W-semigroups and a subcategory Cu
of (abstract) Cu-semigroups, together with a completion functor γ : W → Cu that is
adjoint to the canonical inclusion. In this framework, the assignments A 7→ W(A) and
A 7→ Cu(A) form functors from the category of C*-algebras to the categories W and Cu.
Together with γ, these functors form a commuting diagram. (See [APT18, Chapter 3].)
At a more technical level, the category W contains a class of abelian monoids equipped
with an auxiliary relation (it is called so since it is auxiliary to a natural preorder and is
compatible with the monoid structure) that satisfy a set of natural axioms. Prototypical
examples of W-semigroups include:

• Lsc(X,N), the lower semicontinuous non-negative integer valued functions on a
compact Hausdorff space X,
• W(A) for a C*-algebra A,
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• [0,∞) and [0,∞] with the usual order and addition, and with the auxiliary
relation given by the usual strict order <.

We recall the basics of both categories in the preliminaries and in Section 5. A use-
ful perspective in this general theory is to understand how ∗-homomorphisms between
C*-algebras give rise to Cu- and W-morphisms, i.e., order-preserving monoid homomor-
phisms compatible with the auxiliary relations.

In the category Cu, there is a natural notion of Cu-ideal, which can be used to define
quotients. This was studied in [CRS10] for C*-algebras, where it is shown that for any σ-
unital ideal I of a C*-algebra A, the natural short exact sequence 0→ I → A→ A/I → 0
induces a short exact sequence in the category Cu. In other words, a surjective ∗-
homomorphism between C*-algebras induces a surjective Cu-morphism with its kernel
matching the Cu-semigroup of the C*-kernel. For abstract Cu-semigroups, these notions
were analyzed in [APT18, 5.1].

However, the full story about quotients in the categories W and Cu is a more delicate
topic. In particular, an injective ∗-homomorphism between C*-algebras usually does
not induce an injective W-morphism. This happens in many natural situations, and
sometimes the W-morphism one gets is surjective but non-injective, and thus it should
be understood as a quotient map, but not by ideals.

As a simple example, consider the natural diagonal ∗-homomorphism C⊕C ↪→M2(C).
Applying the functor W (or the functor Cu) to it, we obtain the morphism N⊕N→ N,
defined by x⊕ y 7→ x+ y. This is surjective and non-injective. As a quotient map, it is
induced not by an ideal (the preimage of 0 is 0), but merely by an equivalence relation.
Keeping these sort of examples in mind, our first goal is:

Goal I. Develop a theory of general quotients for W-semigroups to include this type of
phenomenon.

Turning our attention to dynamical systems, a pivotal construction relating topologi-
cal dynamical systems and C*-algebras is that of a crossed product C*-algebra C(X)oG
associated to a group action G y X. More generally, a C*-dynamical system G y A
also gives rise to a crossed product A o G. This construction forms a major bridge
between the theory of dynamical systems and that of C*-algebras. Note that the above
example of C ⊕ C ↪→ M2(C) can be understood through such a construction: it is a
special case of the natural embedding C(X) ↪→ C(X) o G arising from a topological
dynamical system by a discrete group — just take G = Z/2 with its unique nontrivial
action on X = Z/2.

As indicated above, a central problem of current focus is to transfer the ground-
breaking results on classification of amenable C*-algebras to the world of topological
dynamical systems. This would improve our understanding of the structure theory and
classification of the latter, in ways similar to how ergodic theory of amenable groups
benefited from Connes’ classification theorem of simple amenable von Neumann algebras
[C76], and how the theory of Cantor minimal systems benefited from Elliott’s classifi-
cation theorem of AF algebras [GPS95].

In view of the C*-regularity properties appearing in the aforementioned revised form
of the classification program, Kerr put forth in [Ker20] analogous dynamical properties
for actions on compact metric spaces, i.e., abelian C*-algebras, namely finite tower di-
mension, almost finiteness, and dynamical strict comparison (of open sets), and asks to
what extent these conditions are equivalent to each other and to the classical notion of
small boundary property (or, alternatively, mean dimension zero). A crucial ingredient
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in the definitions of dynamical strict comparison and almost finiteness is a notion of
dynamical subequivalence1 between subsets in a topological dynamical system. This no-
tion was inspired by the so-called Cuntz subequivalence that appears in the construction
of the Cuntz semigroup and can itself be used to formulate concepts of type semigroups
([Ker20, Section 13], [Ma21]) that provide a natural framework to study dynamical strict
comparison. These type semigroups can be considered as analogs of Cuntz semigroups
in the setting of topological dynamical systems2.

All this strongly motivates the definition and study of Cuntz semigroups associated
to C*-dynamical systems, in a unifying and systematic fashion.

Goal II. Construct analogs of Cuntz semigroups for C*-dynamical systems.

Note that there is already a very natural object to study in this context, namely
W(AoG) (or Cu(AoG)), the Cuntz semigroup of the crossed product associated to a
C*-dynamical system. However, despite its significance, this semigroup is often difficult
to concretely describe and compute. It is hoped that our construction of dynamical
Cuntz semigroups, which avoids much of the analytic difficulty, can help us tap into
the structure of Cu(AoG). Since an action of a group G on a C*-algebra A naturally
induces an action of G on W(A), this motivates the following:

Goal III. Study the relationship between W(AoG) and the dynamical Cuntz semigroup
of the action Gy W(A).

In the three subsections below, we describe how we fulfill Goal I and Goal II and
make some progress in the direction of Goal III. For the sake of simplicity, we typically
state simplified forms of the results that we actually prove. The reader may follow the
references to find the complete versions.

1.1. General (ideal-free) quotients of W-semigroups. We establish a solid and
systematic foundation for the construction of quotient W-semigroups in the first part of
the paper going far beyond quotients by ideals and use this to tackle Goal I.

As shown in the example just before Goal I, this general notion of quotients is neces-
sary since for the map N⊕N→ N that takes x⊕ y to x+ y, the preimage of 0 consists
of only 0. However, given a Cu-semigroup S and a nontrivial ideal I of S, the preimage
of 0 in S/I is I.

The cornerstones of this generalized theory are summarized below. To keep the pre-
sentation simple, let us assume that our W-semigroups are faithful in the sense that
they satisfy (W2) and the induced preorder is a partial order3.

(1) As argued above, for a W-morphism f : S → T , the equivalence relation on S
induced by f must be the congruence relation of the preorder f∗(≤T ), that is,
the pullback of the partial order ≤T on T . Given the pivotal role the preorder
f∗(≤T ) plays (it contains enough information to recover ≤T , provided that f is
surjective), we call it the kernel of f .

1Such a notion had appeared earlier in lectures of Winter.
2More precisely, the type semigroup in [Ker20, Section 13] is closer in spirit to the Murray-von

Neumann semigroup, while the generalized type semigroup in [Ma21] is closer in spirit to the Cuntz
semigroup.

3We are following the definition of W-semigroups in [APT20b], which allows for preorders, as opposed
to [APT18], which requires a partial order instead. When we refer to the latter case, we use the adjective
faithful.
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(2) It is possible to characterize intrinsically whether a preorder in a W-semigroup
S arises as the kernel of some W-morphism from S to some other W-semigroup.
We say these preorders are normal. For technical convenience in dealing with
the continuous structure in W-semigroups, instead of working with preorders
alone, we work with normal pairs, modelled on the pair consisting of a normal
relation and its induced preorder.

(3) These normal pairs play the role of ideals in our generalized theory: for any
W-semigroup S and any normal pair α, we construct a quotient W-semigroup
S/α.

As suggested by the terminology, there is a strong parallelism with the theory of group
homomorphisms and quotients. Indeed, we have the following analog of the fundamental
theorem of group homomorphisms.

Theorem A (see Theorem 4.4 and Remark 4.5). Let S and T be W-semigroups with
T faithful. Let f : S → T be a W-morphism. Let α be a normal pair on S, and let
πα : S → S/α be the natural quotient W-morphism (as in Proposition 3.11). Then there
is an order-preserving W-morphism h : Sα → T such that the diagram

S

πα
����

f

!!
S/α

h
// T

commutes if and only if α ≤ ker(f). Furthermore, α = ker(f) if and only if h is an
order-embedding.

This theory perfectly models the behaviour of the functor Cu from the category of
C*-algebras to the category Cu. In this situation, we get the following:

Theorem B (see Theorem 5.13). Let ϕ : A → B be an injective ∗-homomorphism
between C*-algebras. Then the resulting Cu-morphism can be decomposed as follows:

Cu(A)
Cu(ϕ) //

(( ((

Cu(B)

Cu(A)/ ker(Cu(ϕ))
∼= // {[ϕ(a)] ∈ Cu(B) : a ∈ (A⊗K)+}

' �

44

where the arrows � and ↪→ indicate surjectivity and injectivity, respectively.

In fact, we deal with the general case of possibly non-injective ∗-homomorphisms in
Theorem 5.13, where ones sees how our notion of generalized quotients contrasts with
the traditional kind of quotients by ideals.

To apply the theory developed above to the dynamical setting (to be discussed in Sub-
section 1.2), we explain a mechanism to generate normal pairs from an arbitrary relation
that satisfies a continuity assumption. Again, the idea here mimics what happens in
group theory. One may obtain a quotient group by modding out certain relations, which
is achieved technically by first generating a normal subgroup using these relations. As
a pedagogical byproduct, this mechanism allows us to give an abstract characterisation
of the Cuntz subequivalence in Corollary 6.8. Namely, for a C*-algebra A, the Cuntz
subequivalence -Cu is the smallest preorder ≤ on the set A+ of positive elements such
that for all a, b ∈ A+, any of the following conditions implies a ≤ b:
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(i) Her(a) ⊆ Her(b), where we write Her(a) = aAa, the hereditary subalgebra gener-
ated by a;

(ii) there exists x ∈ A such that a = xbx∗;
(iii) for any c ∈

⋃
ε>0 Her((a − ε)+), we have c ≤ b, where (a − ε)+ stands for the

positive part of the self-adjoint element (a− ε · 1).
This answers a question raised by G. A. Elliott. Note that the last condition above
points to an essential feature of the continuous structure in Cuntz semigroups and is
analogous to (inner) regularity in measure theory.

Said mechanism is developed in Section 6 and Section 7, where we begin with an
axiomatic approach to define the normal pair generated by a given relation, in the spirit
of the above characterization of -Cu, but then also give more explicit characterisations
(see Theorem 6.2 and Corollary 7.11), in the spirit of the classical definition of the
Cuntz subequivalence -Cu, i.e., a -Cu b if and only if a = limn xnbx

∗
n for some sequence

xn ∈ A. In fact, it is via the explicit constructions that we show the pair given by the
axiomatic approach is indeed normal.

The reason we divide this task into two sections is the following: In the former
section, we only work with the continuous order structure in W-semigroups, disregarding
the additive structure (in more technical terms, we work with W-sets). The additive
structure is blended in only in the latter section, since this adds an extra layer of
complexity related to transitivity (see Paragraph 7.8).

These results provide us with a suitable framework to define the dynamical Cuntz
semigroup. This, as we will subsequently explain, is the largest (general) quotient W-
semigroup in which each element is identified with all its translates.

1.2. Dynamical Cuntz semigroups. As mentioned in the first part of the introduc-
tion, our approach to Goal II is to work in the framework of W-semigroups. In this
setting, recall that an action of a group G on a C*-algebra A induces an action of G on
W(A) by automorphisms in W. These are examples of what we call G-W-semigroups.

Given a faithful G-W-semigroup S equipped with a preorder ≤ and an auxiliary
relation ≺, we use our results to determine the strongest preorder / on S satisfying
that, for all a, b ∈ S, any of the following conditions implies a / b (note the similarity
between the first three condition below and the three conditions above characterising
-Cu):
(i) a ≤ b;
(ii) a = g · b for some g ∈ G;
(iii) for any c ∈ S with c ≺ a, we have c / b;
(iv) there are a1, a2, b1, b2 in S such that a = a1 + a2, b = b1 + b2, and ak / bk for

k = 1, 2.
This preorder is denoted by ≤G and it fits into a normal pair (≺,≤G). We define S/G
to be the quotient W-semigroup by this normal pair, and refer to this as the dynamical
Cuntz semigroup. In other words, S/G is the quotient set of S by the symmetrization
of ≤G, equipped with an auxiliary relation induced from ≺.

Note that restricting to abelian C*-algebras A, our construction agrees with the dy-
namical subequivalence defined by Kerr (see [Ker20]). Further, our theory can be used
to give a somewhat different construction of Ma’s generalized type semigroup ([Ma21]).
This will be explored in a follow-up paper [BPWZ24c].

The semigroup S/G may also be characterized by the following universal property:
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Theorem C (see Theorem 8.6). Let S be a G-W-semigroup and let T be a faithful
W-semigroup. Then for any G-invariant W-morphism f : S → T , there is a unique
order-preserving W-morphism fG : S/G→ T such that the following diagram commutes:

S

πG
��

f

!!
S/G

fG

// T

Moreover, the pair (S/G, πG) is the unique pair of a W-semigroup and a W-morphism
that satisfies the above universal property.

This universal property leads to many nice consequences, mainly formulated in catego-
ry-theoretical language, and we will summarize them briefly: Firstly, considering the
category G-W of G-W-semigroups and G-equivariant W-morphisms, and using the em-
bedding W into G-W using trivial actions, the universal property yields a reflector, i.e.,
a functor left adjoint to the inclusion functor W ↪→ G-W (see Theorem 9.7). Secondly,
Theorem C can be used to verify that the construction of the dynamical Cuntz semi-
group is compatible with the γ-completion functor from W to Cu studied in [APT18],
in the sense that the completion of the dynamical Cuntz semigroup of a G-W-semigroup
S and the one corresponding to γ(S) with the induced action yield the same object in
Cu (see Corollary 9.8). Finally, we also use Theorem C to show that there is a bijection
between the set of G-invariant functionals on S and the set of functionals on S/G. In
particular, there are natural topologies on both sets, under which this bijection becomes
a homeomorphism (see Proposition 11.2).

If the group G acts on a C*-algebra A, then we write WG(A) = W(A)/G and
CuG(A) = γ(W(A)/G) = γ(Cu(A)/G), where the last equality is an instance of the
second point mentioned in the paragraph above. Note that if I is a G-invariant closed
ideal, the action passes to the quotient C*-algebra A/I. We prove that the dynamical
Cuntz semigroup construction is compatible with quotients, as follows:

Theorem D (see Theorem 10.8). Let A be a C*-algebra, and let G be a discrete group
acting on A. For any G-invariant ideal I of A, we have that WG(I) and CuG(I) are
(isomorphic to) ideals of WG(A) and CuG(A), respectively. Moreover,

WG(A)/WG(I) ∼= WG(A/I) and CuG(A)/CuG(I) = CuG(A/I).

1.3. Applications: dynamical strict comparison and the Cuntz semigroup of a
crossed product. Recall that a simple C*-algebra A has strict comparison of positive
elements if, for any a, b ∈W(A), we have a ≤ b whenever λ(a) < λ(b) for any functionals
λ on W(A). This can be suitably generalized to non-simple C*-algebras, and it is known
to be equivalent to the so-called property of almost unperforation in W(A).

Now, if a discrete group G acts on A, there is a natural concept of dynamical strict
comparison, this time using G-invariant functionals on W(A), which we introduce in
Section 11. We show that, as in the case of no group action, this property can be
characterized by the property of almost unperforation in WG(A).

This allows us to make progress regarding Goal III. If A o G denotes the crossed
product by the action of G and ι : A → A oG is the natural embedding, the universal
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property of the dynamical Cuntz semigroup yields the following commutative diagram:

Cu(A)
ι

))
πG
��

CuG(A) κ
// Cu(ι(A)) ⊆ Cu(AoG)

where κ is induced by ι.
A natural problem is to understand how close is the Cu-morphism κ to being an

isomorphism. By a direct computation, one can show that κ is an isomorphism in the
aforementioned example C⊕C ∼= C(Z/2) ↪→ C(Z/2)oZ/2 ∼= M2(C) and, more generally,
for G-C*-algebras of the form C0(G)⊗F , where F is a finite dimensional C*-algebra and
G acts by translation on the first factor and trivially on the second factor. The latter
kind of C*-dynamical systems may be termed elementary: in particular, they involve
elementary C*-algebras and give rise to elementary crossed products. In the follow-
up papers ([BPWZ24a, BPWZ24b]), we introduce a C*-dynamical regularity property
termed almost elementariness requiring the existence of an approximation of the action
by elementary systems as above, up to a dynamical small remainder. We will show in
there that almost elementariness implies dynamical strict comparison.

At the current stage, it appears difficult to give general solutions to the natural
problem above, e.g., characterizing when κ is an order embedding or when it has a dense
image. However, we expect answers in the positive direction under suitable regularity
properties on the C*-dynamical systems. We prove one such result, using dynamical
strict comparison:

Theorem E (see Theorem 11.11). Let G be a discrete group acting minimally on a C*-
algebra A. If A has dynamical strict comparison, then the restriction of κ : CuG(A) →
CuG(AoG) to the soft elements of CuG(A) is an order embedding.

See Section 11 for the definition of soft elements.

2. Preliminaries

We begin our discussion in a generality greater than semigroups, by allowing preorders
instead of partial orders, and by disregarding the additive structure.

2.1 (Relations). Recall that a relation on a set X is a subset of X×X. Given a relation
R on X and a, b ∈ X, we sometimes write aRb for the expression (a, b) ∈ R. For the
sake of clarity, given two relations R and R′ on X, we write R⇒ R′ for the containment
R ⊆ R′ as subsets of X×X, and R⇔ R′ for R = R′, i.e., the two relations are identical.

Let R1, . . . , Rn be relations on a set X. Then the composition R1 ◦ · · · ◦ Rn is the
relation on X defined so that for any a, b ∈ X, we have (a, b) ∈ R1 ◦ · · · ◦Rn if and only
if there are c1, . . . , cn−1 ∈ X such that (a, c1) ∈ R1, (cn−1, b) ∈ Rn and (ck−1, ck) ∈ Rk
for k = 2, . . . , n− 1.

When all the relations in the above are equal to a single relation R, we may use the
abbreviation R◦n. The notation R◦0 stands for the identity relation on X.

We also define the preorder closure of R to be the following relation:

R◦N ⇔
∞⋃
n=0

R◦n .



DYNAMICAL CUNTZ SEMIGROUP AND IDEAL-FREE QUOTIENTS 9

Let A and B be two subsets of X. Then A is cofinal in B with regard to R (or simply
R-cofinal for B) if, for any b ∈ B, there is a ∈ A such that (b, a) ∈ R. Note that we do
not require A ⊆ B.

Remark 2.2. It is clear that (R1 ◦ R2) ◦ R3 ⇔ R1 ◦ R2 ◦ R3 ⇔ R1 ◦ (R2 ◦ R3). In
particular, we have R◦m ◦ R◦n ⇔ R◦(m+n). Also, if R is a preorder, then R ◦ R⇔ R.
In fact, a relation R is transitive if and only if we have R ◦ R⇒ R. It follows that the
preorder closure is the smallest preorder that contains R.

The following accounts for compatibility of relations with a possibly existing additive
structure.

2.3. Let (S,+, 0) be an abelian monoid. All monoids in this paper will be abelian,
written additively, with neutral element denoted by 0. Let R and R′ be two relations
on S. Then we write R+R′ for the relation on S given by{

(a+ a′, b+ b′) ∈ S × S : (a, b) ∈ R and (a′, b′) ∈ R′
}
.

A relation R on S is said to be additively closed if R + R⇒ R, or equivalently, for
any a, a′, b, b′ ∈ S satisfying a′Ra and b′Rb, we have (a′ + b′)R(a+ b).

The additive closure of a relation R, denoted by R+, is the relation on S equal to the
union of all relations of the form R + · · · + R, or equivalently, it is defined so that for
any a, b ∈ S, we have aR+b if and only if there are a1, . . . , an and b1, . . . , bn in S such
that a = a1 + · · ·+ an, b = b1 + · · ·+ bn, and akRbk for k = 1, . . . , n.

It is clear that R+ is the smallest additively closed relation that contains R.

We now recall the axioms used to define the category W. This category was originally
introduced in [APT18] in order to model the classical Cuntz semigroup W(A) of a local
C*-algebra A. It will be our basic framework in which we will develop our construction
of ideal free quotients and, in particular, of the dynamical Cuntz semigroup.

For this we first need to recall the notion of auxiliary relation:

2.4 (Auxiliary relations [GHK+03, Definition I-1.11]). Let (X,≤) be a preordered set.
A relation ≺ on X is said to be auxiliary for ≤ if it satisfies the following conditions:
(i) If a ≺ b, then a ≤ b, for a, b ∈ X.
(ii) If a ≤ b ≺ c ≤ d, then a ≺ d for any a, b, c, d ∈ X.

It is easy to check that ≺ is automatically transitive. In case X is furthermore a
preordered monoid, then ≺ is additive in case it is additively closed and 0 ≺ a for all
a ∈ X.

Now, given a relation ≺ on a set X and a ∈ X, let us write

a≺ = {b ∈ X : b ≺ a}

and define a preorder ≤≺ on X by stating a ≤≺ b if and only if a≺ ⊆ b≺. We shall refer
to ≤≺ as the induced preorder on X by the relation ≺.

2.5 (Compact containment). A standard way to produce an auxiliary relation from a
preorder is the following.

Let X be a set, let ≤ be a preorder on X, and suppose that there is a smallest element
of (X,≤), that we denote by 0. For any a, b ∈ X, we say a is compactly contained in (or
way below) b, and write a� b, if whenever (bn)n∈N is an increasing sequence in (X,≤)
whose supremum sup≤n bn with regard to ≤ exists and b ≤ sup≤n bn, we have a ≤ bn0 for
some n0 ∈ N.
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It is routine to verify that the compact containment relation� is auxiliary for ≤ and
that moreover 0� a for any a ∈ X.

2.6 (W-axioms). Let X be a set and let ≺ be a transitive relation on X. We recall four
properties that ≺ may satisfy, that were already considered in [APT18]:

(W1) For any a ∈ X, there exists a sequence (ak)k in a≺ such that ak ≺ ak+1 for any
k ∈ N, and (ak)k is cofinal in a≺ with regard to ≺, i.e., for any b ∈ a≺ , there is
k ∈ N such that b ≺ ak.

(W2) (Suppose that X has a preorder ≤ for which ≺ is auxiliary.) For any a ∈ X, we
have a = sup≤ a≺ , i.e., for any c ∈ X satisfying b ≤ c for any b ∈ a≺ , we have
a ≤ c.

(W3) (Suppose that X is a monoid.) For any a, a′, b, b′ ∈ X satisfying a′ ≺ a and
b′ ≺ b, we have a′ + b′ ≺ a+ b.

(W4) (Suppose that X is a monoid.) For any a, b, c ∈ X satisfying a ≺ b + c, then
there exist b′, c′ ∈ X such that a ≺ b′ + c′, b′ ≺ b and c′ ≺ c.

Notice that (W1) above implies, in particular, that the relation ≺ satisfies ≺ ⇒ ≺ ◦ ≺;
see Paragraph 3.1. Since it is also transitive, we get ≺ ⇔ ≺ ◦ ≺.

Notice also that (W2) implies that the preorder ≤≺ induced by ≺ is stronger than ≤.
Indeed, if a≺ ⊂ b≺, then c ≤ b for any c ≺ a, hence a ≤ b.

2.7 (W-sets and W-semigroups). In this paper we shall also work with pointed sets,
where the distinguished element is denoted by 0.

A pointed set (X, 0) is a W-set provided there is a transitive relation ≺ on X such
that X satisfies (W1) and 0 ≺ a for any a ∈ X. We shall write (X, 0,≺) to refer to a
W-set.

A morphism f : (X,≺) → (Y,4) between sets equipped with relations (hence, in
particular, of W-sets) is a monotone map (that is, f(a) 4 f(b) in Y whenever a ≺ b in
X) which is also continuous in the following sense:

For any a ∈ X and b ∈ f(a)4 there is a′ ∈ a≺ such that b 4 f(a′).

(We also require that f(0) = 0 in case X,Y are pointed with distinguished element 0.)
In case our set has a monoid structure, then we shall require compatibility properties

between addition and ≺. A W-semigroup is an abelian monoid S together with an
additive, transitive relation ≺, such that (S, 0,≺) is a W-set that satisfies (W4). A W-
morphism between W-semigroups is morphism as W-sets which is moreover additive.
We will usually write (S,≺) to refer to a W-semigroup.

Our prototypical examples of W-preorders will be given on the set of positive elements
of (local) C*-algebras. Among these examples, the following is in a sense the most
fundamental.

Example 2.8. Let A be a C*-algebra. For any a ∈ A+, denote her(a) = aAa. We
define a preorder on A+, the set of positive elements, as follows: a ≤her b if and only if
a ∈ her(b) or, equivalently, if her(a) ⊆ her(b). In other words, ≤her is induced from the
set containment relation on singly generated hereditary subalgebras. Let �her be the
associated compact containment relation. Then (A+,≤her,�her) is a W-set. Indeed,
for any positive element a and any increasing sequence (an)n∈N in A+, we make the
following observations:
(i) if aAa =

⋃∞
k=1 anAan, then a is a supremum of (an)n∈N;
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(ii) the element
∑∞
k=1

an
2n‖an‖ satisfies the above condition, and thus suprema of in-

creasing sequences always exist;
(iii) the increasing sequence

((
a− 1

n

)
+

)
n∈N

has a as a supremum;

(iv) for any positive element b, we have a�her b if and only if there exists δ > 0 such
that a ≤her (b− δ)+;

Hence increasing sequences as constructed in (iii) witness Axioms (W1) and (W2).

The prototypical example of W-semigroup will be given by the Cuntz semigroup of a
(local) C*-algebra. We recall the construction below; see [C78].

Example 2.9. Let A be a C*-algebra. For positive elements a, b ∈ A+, write a -Cu b
if, given ε > 0, there is x ∈ A such that a ≈ε xbx∗ (meaning that ‖a− xbx∗‖ < ε). We
say in this case that a is Cuntz subequivalent to b. Write a ∼Cu b provided a -Cu b and
b -Cu a.

Set W(A) = M∞(A)+/∼Cu. Then W(A) is a W-semigroup with addition given by
[a] + [b] = [

(
a 0
0 b

)
], order induced by -Cu, and auxiliary relation defined by [a] ≺Cu [b]

provided a -Cu (b− δ)+ for some δ > 0.

Remark 2.10. As observed in [APT20b, Remark 2.6], the general theory of W-semi-
groups can be carried out without assuming (W2), as this can always be enforced. We
shall use this approach, which is why we haven’t required said axiom in our definition.

2.11 (Antisymmetrizations). In various situations below we will work with partial or-
ders, mostly in connection with semigroups arising from C*-algebras. Observe that the
use of preorders instead of partial orders is only a matter of technical convenience, rather
than any essential mathematical content. Indeed, given a preorder ≤ on a pointed set
(X, 0), it is clear from the definition that ≤ induces a partial order on the quotient
(X/≤, [0]), where a ≡ b if and only if a ≤ b and b ≤ a. We shall denote the equivalence
classes by [a] for a ∈ X.

3. Normality

In this section we introduce the notion of normality for relations on sets equipped with
a so-called dense transitive relation, and we show that these are the suitable relations
for quotients in our categories to work. We term these relations prenormal, as the
terminology normal is reserved for relations that are moreover additively closed. We
first recall the notion of density.

3.1 (Dense and continuous relations). A relation ≺ on a set X is dense provided that
≺ ⇒ ≺ ◦ ≺. In other words, given a, b ∈ X, there is c ∈ X such that a ≺ c ≺ b. Dense,
transitive relations are sometimes called idempotent.

Now, let f : (X,≺) → (Y,4) be a morphism (in the sense of Paragraph 2.7). The
pull-back relation of 4 through f is a relation on X, denoted by f∗(4), and defined
by af∗(4)b if f(a) 4 f(b). Using monotonicity and continuity, one may check that the
pull-back relation f∗(4) is weaker than ≺ and dense. Further, continuity also implies
that, if we write ≺≺ = f∗(4), then for any a ∈ X, the set a≺ is ≺≺-cofinal in a≺≺.

If (X,≺) is a set equipped with a relation, we say that another relation 4 on X is
left ≺-continuous provided ≺ ◦4⇒ ≺ ◦4 ◦ ≺. This is equivalent to saying that the
identity map (X,≺)→ (X,≺ ◦4) is continuous. If 4 is moreover weaker than ≺, then
being left ≺-continuous is equivalent to the fact that the identity map is a morphism as
defined above.
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The following lemma characterizes when a dense transitive relation is a pull-back
relation. We only provide a few details of its proof.
Lemma 3.2. Let ≺ be a dense transitive relation on a set X and let 4 be another
relation on X. Then, the following conditions are equivalent:
(i) The relation 4 is the pull-back of a dense transitive relation ≺′ on a set Y through

a morphism f : (X,≺)→ (Y,≺′).
(ii) The relation 4 is dense, transitive, and the identity map (X,≺) → (X,4) is a

morphism.
(iii) The relation 4 is transitive, weaker than ≺, and satisfies that a≺ is 4-cofinal in

a4 for any a ∈ X.
(iv) The relation 4 is transitive, weaker than ≺, and satisfies 4 = 4 ◦ ≺.
(v) The relation 4 is transitive, weaker than ≺, satisfies 4 = 4 ◦ ≺ ◦4, and is left
≺-continuous.

Proof. (i) =⇒ (ii): If there is a set (Y,≺′) with a dense relation ≺′ and a morphism
f : (X,≺)→ (Y,≺′) such that 4= f∗(≺′), then clearly a ≺ b implies that f(a) ≺′ f(b),
that is, a 4 b. Thus the identity map (X,≺)→ (X,4) is monotone. If now a 4 b, then
f(a) ≺′ f(b) and, since f is continuous, there is b0 ≺ b such that f(a) ≺′ f(b0). This
means that a 4 b0 and b0 ≺ b, that is, the identity map is continuous.

(ii) =⇒ (iii): That 4 is weaker than ≺ follows from monotonicity of the identity,
whilst the fact that a≺ is 4-cofinal in a4 is a consequence of continuity.

(iii) =⇒ (iv): If a 4 b, then by cofinality a 4 b′ with b′ ≺ b, and thus a 4 ◦ ≺ b. The
rest of assertions follow trivially.

(iv) =⇒ (v): This is a routine check.
(v) =⇒ (i): The assumptions imply that the identity map (X,≺) → (X,4) is a

morphism, whose pull-back relation is clearly 4. We further have, using also that 4 is
weaker than ≺, that 4 = 4 ◦ ≺ ◦4⇒ 4 ◦4. Thus 4 is dense, as desired. �

3.3 (Prenormality). Let (X,≺) be a set equipped with a dense transitive relation. We
say that another transitive relation 4 on X is ≺-prenormal, provided it satisfies any of
the equivalent conditions of Lemma 3.2. We will mostly use condition (iv), that is, 4
is weaker than ≺ and also 4 = 4 ◦ ≺. Notice that ≺ is clearly ≺-prenormal. It is not
difficult to verify that prenormal relations as just defined satisfy the following universal
property, whose proof we omit:

If (X,≺) is a set equipped with a dense transitive relation and 4 is a ≺-prenormal
relation on X, then given any other set (Y,≺′) with a dense transitive relation ≺′ and a
monotone continuous map f : (X,≺)→ (Y,≺′), there is a unique monotone continuous
map f : (X,4)→ (Y,≺′) such that the diagram

(X,≺)

id
��

f

$$
(X,4)

f

// (Y,≺′)

commutes (that is, f = f ◦ id as morphisms) if and only if 4⇒ f∗(≺′). (Indeed, the
map f is defined by f(a) = f(a).)
3.4 (Admissible pairs). Let (X,≺) be a set equipped with a dense transitive relation ≺.
Given a preorder ≤ on X, we say that the pair α = (≺,≤) is admissible provided that
a ≤ b whenever a≤◦≺ ⊆ b≤◦≺. Notice that a≺ ⊆ b≺ always implies that a≤◦≺ ⊆ b≤◦≺.
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Perhaps the most natural example of an admissible pair consists of the pair α≺ :=
(≺,≤≺), which we call minimal admissible. To see this, we use temporarily ≤ for ≤≺,
and we need to check that a≤◦≺ ⊆ b≤◦≺ implies a ≤ b. Thus, let x ≺ a, and choose y
such that x ≺ y ≺ a. As y ≤ y ≺ a, there is z with y ≤ z ≺ b and since x ≺ y we have
x ≺ z ≺ b, hence x ≺ b. Since x was arbitrary, we conclude that a ≤ b.

On the other hand, if ≺ is auxiliary for ≤, then α = (≺,≤) is admissible if and only
if a≺ ⊆ b≺ implies a ≤ b. In this case, we say that α is an admissible auxiliary pair.

Let α1 = (≺1,≤1) and α2 = (≺2,≤2) be admissible pairs, where ≺i are other dense
transitive relations on X. We write α1 ≤ α2 whenever
(i) ≺1 ⇒ ≺2,
(ii) a≤1◦≺1 ⊆ b≤1◦≺1 =⇒ a≤2◦≺2 ⊆ b≤2◦≺2 , and
(iii) ≤1 ⇒ ≤2.
This is clearly a partial order amongst admissible pairs. By definition the pair α≺ is the
smallest amongst all admissible pairs of the form (≺,≤). Indeed, (≺,≤) is an admissible
pair and a, b ∈ X, then since as noted above a≺ ⊆ b≺ implies that a≤◦≺ ⊆ b≤◦≺, we see
that ≤≺ ⇒ ≤. From this it follows easily that α≺ ≤ (≺,≤).

More is true: It can be shown that α≺ is the smallest amongst all those admissible
pairs α = (4,≤) such that 4 is ≺-prenormal.

We say that an admissible pair α = (4,≤) is prenormal (or ≺-prenormal) provided
4 is ≺-prenormal and ≤ is left ≺-continuous. In other words, ≺ ⇒ 4, 4 = 4 ◦ ≺, and
≺ ◦ ≤ ⇒ ≺ ◦ ≤ ◦ ≺. Note that an admissible pair of the form (≺,≤) is prenormal if and
only if ≤ is ≺-continuous. This is the case for the minimal admissible pair α≺ = (≺,≤≺).

An admissible pair α = (≺,≤) is left closed (or more precisely, left ≺-closed) if, for
any a, b ∈ X, whenever (c, b) ∈≺ ◦ ≤ for all c ∈ a≺ , we have (a, b) ∈ ≤≺◦ ≤.

It follows from the definition, and using the fact that ≺ ◦ ≤≺ = ≺, that the minimal
admissible pair α≺ = (≺,≤≺) is always left ≺-closed.

We single out the following useful observation:

Lemma 3.5. Let (X,≺) be a set equipped with a dense transitive relation.
(i) If α1 = (≺1,≤1) and α2 = (≺2,≤2) are admissible pairs and ≺1,≺2 are ≺-

prenormal, then α1 ≤ α2 if and only if ≺1 ⇒ ≺2 and ≤1 ⇒ ≤2.
(ii) Let α = (4,≤) be a ≺-prenormal (admissible) pair. If ≤ ◦4⇒ 4, then α is

auxiliary.

Proof. (i): Following the definition, we need to verify that, if ≺1 ⇒ ≺2, ≤1 ⇒ ≤2, and
a≤1◦≺1 ⊆ b≤1◦≺1 , then a≤2◦≺2 ⊆ b≤2◦≺2 . Let x ≤2 x′ ≺2 a. Since ≺1 and ≺2 are
≺-prenormal, we have ≺2 ⇒ ≺2 ◦ ≺1, and thus there is x′′ such that x′ ≺2 x

′′ ≺1 a.
Therefore x′′ ≤1 x

′′ ≺1 a, which by assumption implies that there is z with x′′ ≤1 z ≺1 b.
Now, this clearly implies that x ≤2 z ≺2 b.

(ii): We only need to verify that 4 ◦ ≤ ⇒ 4. This follows by applying that 4 is ≺-
prenormal at the first step, that ≤ is ≺-continuous at the second step, that 4 is weaker
than ≺ at the third step, and our assumption at the last step below:

4 ◦ ≤ = 4 ◦ ≺ ◦ ≤ ⇒ 4 ◦ ≺ ◦ ≤ ◦ ≺ ⇒ 4 ◦ ≤ ◦4⇒ 4 . �

The following connects prenormality for preorders and dense relations.

Proposition 3.6. Let (X,≺) be a set equipped with a dense transitive relation. Let
(≺,≤) be an admissible pair. Then, the following conditions are equivalent:
(i) (≺,≤) is ≺-prenormal and left ≺-closed.
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(ii) With 4:=≤ ◦ ≺ ◦ ≤, the pair (4,≤) is ≺-prenormal, minimal admissible, and aux-
iliary.

(iii) There is a dense relation 4 on X such that the pair (4,≤) is ≺-prenormal, min-
imal admissible and auxiliary.

(iv) There is a dense relation 4 on X such that the pair (4,≤) is ≺-prenormal, aux-
iliary and such that (X,4,≤) satisfies (W2).

Proof. (i) =⇒ (ii): By definition 4=≤ ◦ ≺ ◦ ≤, and we have that ≺ ⇒ 4⇒ ≤. It
follows from the definition of 4 that it is a dense transitive relation. To see it is also
≺-prenormal we verify condition (iii) in Lemma 3.2. To this end we need to show that,
for any a ∈ X, we have that a≺ is 4-cofinal in a4. If x 4 a, then x ≤ ◦ ≺ ◦ ≤ a and,
since ≤ is left ≺-continuous, we have x ≤ ◦ ≺ ◦ ≤ ◦ ≺ a. Thus there is y ≺ a such that
x 4 y.

Let us now check that a ≤ b if and only if a4 ⊆ b4. The forward implication follows
from the fact that 4 is, by construction, auxiliary for ≤. For the converse, since (≺,≤)
is admissible and left ≺-closed, it is enough to check that (c, b) ∈ ≺ ◦ ≤ for any c ∈ a≺.
This will imply that (a, b) ∈≤≺ ◦ ≤, and thus a ≤ b.

Thus, if c ≺ a, use density to find c′ ∈ X with c ≺ c′ ≺ a. Then, since 4 is weaker
than ≺, we have c′ ∈ a4 and thus c′ ∈ b4. Using again that ≤ is weaker than 4 we
obtain c ≺ c′ ≤ b, as required. Thus, since ≤ is induced by 4, we have that (4,≤) is
minimal admissible.

(ii) =⇒ (iii) is trivial.
(iii) =⇒ (iv):
To verify (W2) on (X,4,≤), first notice that c ≤ a for any c ∈ a4. Next, let x ∈ X

be such that c ≤ x for any c 4 a. Using density for 4, we have for any such c an element
c′ such that c 4 c′ 4 a. Then c′ ≤ x and thus, since 4 is auxiliary for ≤, we conclude
c 4 x. Thus a4 ⊆ x4 which, since the pair (4,≤) is minimal admissible by assumption,
already implies that a ≤ x.

(iv) =⇒ (iii): Let us check that 4 as in the statement induces ≤. If a4 ⊆ b4, then
for any x ∈ X such that x 4 a, we have x 4 b and thus x ≤ b. Using (W2) we obtain
a ≤ b. The converse is clear since 4 is auxiliary for ≤.

(iii) =⇒ (i): Since ≤ is weaker than 4, and the latter is weaker than ≺, we have that
≤ is also weaker than ≺. Let us check that ≤ is left ≺-continuous, hence assume that
a ≺ b ≤ c, for some a, b, c ∈ X. By density, find c′ ∈ X such that a ≺ c′ ≺ b, and thus
c′ 4 b. Since 4 is ≺-prenormal, we have from condition (iv) in Lemma 3.2 that there is
b′ ≺ b with c′ 4 b′. Therefore a ≺ c′ ≤ b′ ≺ b, which proves that ≤ is left ≺-continuous.

Finally, we show that (≺,≤) is left ≺-closed. Suppose that (c, b) ∈≺ ◦ ≤ for all c ∈ a≺.
It suffices to show that a ≤ b, that is, a4 ⊆ b4. Let c ∈ X be such that c 4 a. Then,
since 4 is ≺-prenormal, there is a′ ≺ a such that c 4 a′, and thus by our assumption
(a′, b) ∈≺ ◦ ≤, that is, a′ ≺ b′ ≤ b, for some b′ ∈ X. Since c 4 a′ and 4 is weaker than
≺, we have c 4 b, as required. �

Proposition 3.7. Let (X,≺) be a set equipped with a dense transitive relation, let 4
be a ≺-prenormal relation, and let ≤ be a preorder. If (4,≤) is admissible, then so is
(≺,≤). Moreover, in this case the following are equivalent:
(i) (≺,≤) is ≺-prenormal.
(ii) (4,≤) is 4-prenormal.

Further, (≺,≤) is ≺-prenormal and ≺-closed if and only if (4,≤) is 4-prenormal and
4-closed.
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Proof. Assume that (4,≤) is admissible. We must prove that a≤◦≺ ⊆ b≤◦≺ implies
a ≤ b. To see this, let x, x̃ ∈ X satisfy x ≤ x̃ 4 a. Since 4 is ≺-prenormal, we have from
condition (iv) in Lemma 3.2 that 4 is weaker than ≺ and that 4 = 4 ◦ ≺. Therefore,
there is x′ ∈ X such that x̃ 4 x′ ≺ a. Therefore x ≤ x′ ≺ a and so there is y ∈ X such
that x ≤ y ≺ b. This implies that x ≤ y 4 b. We have shown that a≤◦4 ⊆ b≤◦4, hence
a ≤ b since (4,≤) is admissible.

A second usage of the fact that 4 is ≺-prenormal yields
≤ ◦ ≺ ◦ ≤=≤ ◦4 ◦ ≤ .

(i) =⇒ (ii): By assumption we know that ≤ is left ≺-continuous. Hence we only need
to check that ≤ is 4-continuous. Since 4 is ≺-prenormal, condition (iv) in Lemma 3.2
yields again that 4 = 4 ◦ ≺. Using this at the first step, that ≤ is ≺-continuous (so
≺ ◦ ≤ ⇒ ≺ ◦ ≤ ◦ ≺) at the second step, and that ≤ and 4 are weaker than ≺ at the
third step, we obtain

4 ◦ ≤ = 4 ◦ ≺ ◦ ≤ ⇒ 4 ◦ ≺ ◦ ≤ ◦ ≺ = 4 ◦ ≤ ◦4,
and thus (4,≤) is 4-prenormal.

If, further, (≺,≤) is ≺-closed, we know from (i) =⇒ (ii) in Proposition 3.6 that ≤
is induced by ≤ ◦ ≺ ◦ ≤ which by our observation at the beginning of the proof equals
≤ ◦4 ◦ ≤. Now, we have proved that ≤ is 4-continuous, and then it easily follows that
≤ ◦4 ◦ ≤ is 4-prenormal (verifying condition (iv) in Lemma 3.2). Since this relation
induces (and is clearly auxiliary for) ≤, we obtain from (iii) =⇒ (i) of Proposition 3.6
that (4,≤) is left 4-closed.

(ii) =⇒ (i): Suppose that (4,≤) is 4-prenormal. By our assumptions we easily obtain
that ≤ is weaker than ≺, hence in order to prove (i) we only need to show that ≤ is
left ≺-continuous. Using density of ≺ at the first step, that 4 is weaker than ≺ at the
second step, that ≤ is left 4-continuous at the third step, and that 4 is ≺-prenormal
at the fourth step, we obtain

≺ ◦ ≤ = ≺ ◦ ≺ ◦ ≤ ⇒ ≺ ◦4 ◦ ≤ ⇒ ≺ ◦4 ◦ ≤ ◦4 = ≺ ◦4 ◦ ≤ ◦4 ◦ ≺,
which clearly yields ≺ ◦ ≤ ⇒ ≺ ◦ ≤ ◦ ≺, as desired.

The argument for closedness is similar to the one in the implication (i) =⇒ (ii). �

For the rest of the section we focus on W-semigroups and we extend the notions and
results just developed above to allow for compatibility with addition.
3.8 (Normal relations). Let (S,≺) be a W-semigroup, that is, (S,≺) is a W-set such
that ≺ is additive and satisfies (W4). We say that a relation 4 is ≺-normal if if is
additively closed and ≺-prenormal. An admissible pair (4,≤) is additively closed if
both 4 and ≤ are additively closed. Finally, an admissible pair (4,≤) on S is ≺-normal
if it is additively closed and ≺-prenormal; see Paragraph 3.4.

For a relation 4, one might ask whether being ≺-normal is equivalent to 4 being the
additive closure of a ≺-prenormal relation. We note that this is generally not true, as
additive closures of transitive relations may fail to be transitive in general.
Lemma 3.9. Let (S,≺) be a W-semigroup, and let (≺,≤) be an admissible pair. Then
(≺,≤) is ≺-normal and left ≺-closed if and only ≤ is induced by a ≺-normal auxiliary
relation 4.
Proof. Suppose first that (≺,≤) is ≺-normal and closed. Then we know from (i) =⇒ (ii)
in Proposition 3.6 that 4 = ≤ ◦ ≺ ◦ ≤ is a ≺-prenormal relation that induces ≤. Notice
that, since both ≺ and ≤ are additive, the same holds for 4, and thus 4 is ≺-normal.



16 JOAN BOSA, FRANCESC PERERA, JIANCHAO WU, AND JOACHIM ZACHARIAS

Conversely, let4 be an abstract≺-normal relation that induces≤ and is also auxiliary.
It follows again from Proposition 3.6 that (≺,≤) is ≺-prenormal and closed, so it only
remains to check that it is also additive. Suppose that ai ≤ bi for i = 1, 2 in S, and
let x ∈ S be such that x 4 a1 + a2. By condition (iv) in Lemma 3.2 we have that
4 = 4 ◦ ≺, hence we can find y ∈ S such that x 4 y and y ≺ a1 + a2. Using (W4), we
have elements a′1, a′2 ∈ S such that a′i ≺ ai for each i and y ≺ a′1 + a′2. Since 4 is weaker
than ≺ we have a′i 4 ai for each i, and since ai ≤ bi and 4 is auxiliary for ≤, we obtain
that a′i 4 bi for each i. Using that 4 is additive, we finally get x 4 y ≺ a′1 +a′2 4 b1 +b2,
which implies that x 4 b1 +b2. Since 4 induces ≤, this shows that a1 +a2 ≤ b1 +b2. �
3.10 (The prequotient and quotient of a set by a pair). We define the prequotient of
X by a pair α = (4,≤), and we denote this by Xα to be the set X equipped with the
relation 4α defined by a 4α b, for a, b ∈ X, precisely when a ≤ ◦4 b. In this way,
we obtain an admissible pair in Xα given by (4α,≤). Note that if α is auxiliary, then
(4α,≤) = α. Observe also that, if ≺ is another relation such that α is ≺-normal, then
so is (4α,≤), as is easily verified from the definitions.

We denote by πα : X → Xα the map which on elements is the identity and keeps track
of the prequotient relation, and refer to it as the natural map.

The quotient of X by α is denoted by X/α and by definition is the antisymmetrization
of Xα, namely, X/α := (Xα)/≤, as in Paragraph 2.11. The quotient map will also be
referred to as the natural map and denoted by πα : X → X/α.

We observe here that our constructions remain unaffected after antisymmetrizing.
For example, let (S,≺) be a W-semigroup, and let α = (4,≤) be a ≺-normal admissible
pair. Then we may equip S/α with the relation 4α defined by: [a] 4α [b] if a ≤ ◦4 b.
Also, the pair (4α,≤) is 4α-normal.

Let us verify that this definition does not depend on the representatives chosen. Use
the implication (i) =⇒ (ii) in Proposition 3.7 to conclude that (4,≤) is 4-normal.
Now suppose that a′ ≤ a, b ≤ b′ and a ≤ ◦4 b in S. Thus, there is a0 ∈ S with
a ≤ a0 4 b ≤ b′. Since ≤ is 4-continuous, we have that 4 ◦ ≤ ⇒ 4 ◦ ≤ ◦4. Therefore,
there are elements a1, a2 ∈ S such that a0 4 a1 ≤ a2 4 b′. This implies that a′ ≤ a2 4 b′,
as required.

We will see now that normal admissible pairs parametrize the possible W-structures
on a W-semigroup S and its possible quotients. More precisely:
Proposition 3.11. Let (S,≺) be a W-semigroup, let 4 be another additive relation,
and let α = (4,≤) be an admissible pair. Then
(i) 4 is a ≺-normal relation if and only if (S,4) is a W-semigroup and the identity

map (S,≺)→ (S, 0,4) is a W-morphism.
(ii) If α is ≺-normal, then (Sα,4α) is a W-semigroup and the natural map πα : S → Sα

is a W-morphism. Also, (S/α,4α) is a W-semigroup and πα : S → S/α is a W-
morphism.

Proof. (i): Suppose that 4 is ≺-normal. Since, in particular, 4 is weaker than ≺, it is
clear that 0 4 a for all a ∈ S. By condition (iii) in Lemma 3.2, we also have that a≺ is
4-cofinal in a4 for each a ∈ S. Now, given a ∈ S, let (ak) be a ≺-increasing sequence,
cofinal in a≺. If x 4 a, then by cofinality of a≺ in a4 there is y ∈ X with y ≺ a such
that x 4 y. Therefore, we may find k with y ≺ ak, and thus x 4 y ≺ ak. This implies
that (ak) is also cofinal for a4 with regard to 4 and so (S,4) satisfies (W1).

It is clear that (W3) is satisfied. As for (W4), let c ∈ X be such that c 4 a1 + a2. By
condition (iv) in Lemma 3.2, 4 satisfies 4 = 4 ◦ ≺ and thus there is c′ ≺ a1 + a2 such
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that c 4 c′. Now, using (W4) for (S,≺), we obtain elements a′i ≺ ai for i = 1, 2, and
so c′ ≺ a′1 + a′2. It clearly follows that c 4 a′1 + a′2 with also a′i 4 ai for each i. Thus
(S,4) is also a W-semigroup. Notice that the identity map (S,≺) → (S,4) is clearly
monotone, and it is continuous using again that 4 satisfies 4 = 4 ◦ ≺.

The converse implication is trivial.
(ii): Assume that (4,≤) is ≺-normal. Then, by Proposition 3.7, we obtain that (≺,≤)

is admissible.
By (i), we know that (S,4) is a W-semigroup and it follows easily that Sα (equipped

with 4α = ≤ ◦ ≺) is also W-semigroup. Indeed, to check (W1), it suffices to take,
for each a ∈ S a 4-increasing sequence (ak) in a4 which is cofinal, and then since
a4 ⊆ a≤◦4 it follows that (ak) is also cofinal for a4α . That (W3) holds is immediate
since all relations involved are additive. To see that (W4) also holds, let c, a1, a2 ∈ S be
such that c 4α a1 + a2. Then c ≤ c′ 4 a1 + a2 for some c′ ∈ S, and thus, using (W4) in
(S,4), we find elements a′1, a′2 ∈ S with a′i 4 ai for i = 1, 2 and such that c′ 4 a′1 + a′2.
It follows that c 4α a′1 + a′2 with a′i 4α ai for each i.

That πα is monotone is immediate since ≺ is idempotent and both ≤ and 4 are
weaker relations. Continuity of πα follows since, as observed in (i), we have 4 = 4 ◦ ≺.

The final part of the statement follows easily. �

4. The fundamental theorems

In this short section we establish the fundamental theorems of quotients of relations,
which parallel those for groups, thus justifying our terminology for normal relations.
4.1 (Kernels). Let (S,≺S) and (T,≺T ) be W-semigroups. Given a W-morphism f : S →
T , we define its kernel as the preorder ≤f= {(a, b) : f(a)≺T ⊆ f(b)≺T }. (This is some-
times denoted by ker(f), but we choose here a different notation for reasons that will be
clear below.) To ease the notation, let us denote by ≤S and ≤T the preorders induced
by ≺S and ≺T respectively (so, for example, ≤S = ≤≺S ). It follows from the definitions
that ≤f = f∗(≤T ) and ≤S ⇒ ≤f . For example, to check the second assertion, suppose
that a ≤S b and x ≺T f(a). Then one has by continuity that there is a′ ∈ S with
a′ ≺S a and x ≺T f(a′). Since a ≤S b, we have a′ ≺S b and thus by monotonicity we
get x ≺T f(a′) ≺T f(b). Hence a ≤f b. We denote by ker(f) = (≺S ,≤f ), and refer to it
as the kernel pair of f .
Proposition 4.2. Let (S,≺S) and (T,≺T ) be W-semigroups, and let f : S → T be a
W-morphism. Then:
(i) ker(f) = (≺S ,≤f ) is an admissible ≺S-normal closed pair.
(ii) (Sker(f),≺ker(f)) and (S/ker(f),≺ker(f)) are W-semigroups.

Proof. (i): Let us first show that ker(f) is admissible. Thus assume that a≤f◦≺S ⊆
b≤f◦≺S , and we are to show that a ≤f b, that is, f(a)≺T ⊆ f(b)≺T . Let x ∈ T be such
that x ≺T f(a). By continuity of f , there is a′ ≺S a with x ≺T f(a′). Choose a′′ such
that a′ ≺S a′′ ≺S a. Then we have f(a′) ≺T f(a′′), whence a′ ≤f a′′ ≺S a, that is,
a′ ∈ a≤f◦≺S . By assumption, this implies that a′ ∈ b≤f◦≺S , and thus there is b′ ≺S b
such that a′ ≤f b′. Therefore, since x ≺T f(a′) we obtain that x ≺T f(b′) ≺T f(b).

To see that ker(f) is ≺S-normal, we only need to check that ≤f is left ≺S-continuous.
Hence, let a, b, c ∈ S and assume that a ≺S b and that b ≤f c, that is, f(b)≺T ⊂ f(c)≺T .
Choose a′ ∈ S such that a ≺S a′ ≺S b. Since f(a′) ≺T f(c), there is by continuity an
element c′ ∈ S with c′ ≺S c and f(a′) ≺T f(c′). Thus a ≺S a′, a′ ≤f c′, and c′ ≺T c, as
required.
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Finally, to check that ker(f) is ≺S-closed, assume that (c, b) ∈ ≺S ◦≤f for any c ≺S a.
It is enough to show that a ≤f b, that is, f(a)≺T ⊂ f(b)≺T . Let d ∈ T be such that
d ≺T f(a), and choose c′ ≺S a with d ≺T f(c′), again by continuity. Since by assumption
(c′, b) ∈ ≺S ◦≤f , there is c′′ ∈ S such that c′ ≺S c′′ and c′′ ≤f b, and hence f(c′) ≺T f(b).
It follows that d ≺T f(c′) ≺T f(b), as desired.

(ii) follows from (i) and condition (ii) in Proposition 3.11. �

Remark 4.3. In the context of Proposition 4.2, and in order to ease the notation, we
will write Sker(f) and S/ker(f), omitting the corresponding relations.

Theorem 4.4. Let (S,≺S) and (T,≺T ) be W-semigroups and let f : S → T be a W-
morphism. Let α = (≺S ,≤) be a ≺S-normal pair and write αT = (≺T ,≤≺T ). Then f
constitutes a W-morphism Sα → TαT if and only if α ≤ ker(f). Furthermore, α = ker(f)
if and only if f constitutes an order-embedding Sα → TαT .

Proof. We have from Proposition 3.11 (ii) that Sα is a W-semigroup (with a ≺α b if and
only if there is a′ ∈ S with a ≤ a′ ≺S b) and the map πα : S → Sα is a W-morphism.
As we did before, let us denote ≤T=≤≺T . We have that TαT is a W-semigroup (with
≺αT=≤T ◦ ≺T ).

Now assume that α ≤ ker(f). The first part is clear since, if a ≤ b in Sα, that is,
a ≤ b in S, then using that ≤ ⇒ ≤f we have f(a)≺T ⊆ f(b)≺T , that is, f(a) ≤T f(b).

Let us show that f also constitutes a W-morphism Sα → TαT . If a ≺α b, then there
is a′ such that a ≤ a′ ≺S b. By the paragraph above, and since f is a W-morphism
S → T , we obtain f(a) ≤T f(a′) ≺T f(b). Therefore f(a) ≺αT f(b) in TαT . Next, if
c ≺αT f(a), then there is c′ such that c ≤T c′ ≺T f(a) in T . By continuity of f , there is
a′ ≺S a such that c′ ≺T f(a′), and this implies that c ≺αT f(a′), hence f is continuous
Sα → TαT .

Conversely, suppose that f is a W-morphism Sα → TαT . If a ≤ b in S, then clearly
a ≤ b in Sα and thus f(a) ≤T f(b) in TαT , that is, f(a) ≤T f(b) in T , which means that
a ≤f b. Therefore α ≤ ker(f).

Finally, assume that ker(f) = α and that h(a) = f(a) ≤T f(b) = h(b). This means
that a ≤f b, which by assumption translates into a ≤ b. The converse is similar. �

Remark 4.5. Using arguments similar to the ones in Paragraph 3.10, the reader may
check that Theorem 4.4 remains valid after antisymmetrizing. Since it will be used later
repeatedly, we state it here for convenience: Given W-semigroups (S,≺S), (T,≺T ), a
W-morphism f : S → T , and a ≺S-normal pair α = (≺S ,≤), then there is a unique
order-preserving W-morphism h : S/α→ T/αT such that

S

πα
��

f // T

παT
��

S/α
h
// T/αT ,

is commutative if and only if α ≤ ker(f), and h is an order-embedding precisely when
α = ker(f). Note that h is uniquely determined by f .

Lemma 4.6. Let (S,≺) be a W-semigroup. Let α = (4,≤) be a ≺-normal admissible
pair. Denote by 4α the relation induced by 4 in Sα, that is, 4α = ≤ ◦4 (see Para-
graph 3.10). For any other ≺-normal pair α′ = (4′,≤′) in S such that α ≤ α′, let
α′α = (4α′α ,≤α′α) be the pair in Sα defined by
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(i) a ≤α′α b if a ≤′ b;
(ii) a 4α′α b if a ≤′ ◦4′ b.

Then α′α is a 4α-normal (admissible) auxiliary pair in Sα. In the case that α′ = α, we
have αα = (4α,≤). In particular, αα ≤ α′α.

Proof. Using the definitions, it is easy to verify that α′α is an admissible pair in Sα.
Indeed, this follows from the equality ≤α′α ◦4α′α = ≤′ ◦ ≤′ ◦4′ = ≤′ ◦4′.

We now show that ≤′ is also 4-continuous. To do so, we use below that 4 is ≺-normal
at the first step, that 4′ is weaker than ≺ at the second step, that ≤′ is 4′-continuous
at the third step, that 4′ is ≺-normal and ≤′ weaker than 4′ at the fourth step, and
that 4 is weaker than ≺ at the final step, hence we get:
4 ◦ ≤′ = 4 ◦ ≺ ◦ ≤′ ⇒ 4 ◦4′ ◦ ≤′ ⇒ 4 ◦4′ ◦ ≤′ ◦4′ ⇒ 4 ◦ ≤′ ◦ ≺ ⇒ 4 ◦ ≤′ ◦4 .
Using this fact at the first step, that 4 is dense at the second step, and that 4 is

weaker than ≤ at the final step, we get
≤ ◦4 ◦ ≤′ ⇒ ≤ ◦4 ◦ ≤′ ◦4⇒ ≤ ◦4 ◦ ≤′ ◦4 ◦4⇒ ≤ ◦4 ◦ ≤′ ◦ ≤ ◦4,

and thus ≤α′α is 4α-continuous.
Finally, to check that 4α′α is 4α-normal, this amounts to checking that

≤′ ◦4′ = ≤′ ◦4′ ◦ ≤ ◦4 .
Since 4′ is ≺-normal and 4,≤ are weaker than ≺ we obtain

≤′ ◦4′ = ≤′ ◦4′ ◦ ≺ ◦ ≺ ⇒ ≤′ ◦4′ ◦ ≤ ◦4,
and the other inclusion is similar. That α′α is auxiliary follows from Lemma 3.5, and
the last part of the statement is trivial. �

Theorem 4.7. Let (S,≺) be a W-semigroup, and let α = (4,≤) be a ≺-normal admissi-
ble pair. Retain the notation in Lemma 4.6. Then, the natural W-morphism πα : S → Sα
induces a one-to-one correspondence

π̃ : {α′ : α ≤ α′ is a ≺ -normal pair} → {β : αα ≤ β is a 4α -normal pair in Sα}
given by π̃(α) = α′α, which is bijective on admissible auxiliary pairs. Furthermore,
we have a commutative diagram of W-morphisms, of which the bottom row is a W-
isomorphism:

S
πα //

πα′

��

Sα

πα′α
��

Sα′
ϕ // (Sα)(α′α).

Proof. We already know from Lemma 4.6 that π̃(α) is a 4α-normal pair in Sα and that
the correspondence π̃ is one-to-one.

Next, let β be a 4α-normal auxiliary pair in Sα that contains (4α,≤α), say β =
(4̃, ≤̃). Define a preorder ≤′ on S by a ≤′ b if there is b0 such that a ≤ b0 and b0≤̃b. (It
is easy to verify that ≤′ is a preorder since ≤α ⇒ ≤̃.)

Define a relation 4′ on S by a 4′ b if a ≤′ b0 and b04̃b, which is easily seen to be
dense and transitive. We claim that the pair α′ = (4′,≤′) is ≺-normal (admissible)
auxiliary and π̃(α′) = β.

To see that π̃(α′) = β we use Lemma 4.6 together with the fact that β is auxiliary.
For example, for a, b ∈ S we have that a 4α′α b if and only if there is b̃ ∈ S such that



20 JOAN BOSA, FRANCESC PERERA, JIANCHAO WU, AND JOACHIM ZACHARIAS

a ≤′ b̃ 4′ b. Then, by definition of ≤′ and 4′, we can find elements b0, c0 ∈ S such
that a ≤ b0, b̃ ≤′ c0, and b0≤̃b̃, c04̃b. Therefore a≤̃b0≤̃c0 and c04̃b, which implies that
a4̃b since β is auxiliary. With similar (and easier) arguments we see that a4̃b implies
a 4α′α b and also that a ≤α′α b precisely when a≤̃b.

Note that, by definition, ≤′ ◦4′ = 4′. Also, if a4′ ⊆ b4
′ , we have that a4α′α ⊆ b

4α′α

and, using that π̃(α′) = β and that β is admissible, we get a≤̃b, that is, a ≤′ b. Therefore
α′ is also admissible.

That α′ is ≺-normal auxiliary is a tedious routine check, using that β is 4α-normal
auxiliary and that α is ≺-normal, hence we omit the details.

The last part of the statement follows directly using Lemma 4.6. �

5. Ideals

In this section we introduce the notion of ideal of a W-semigroup and relate it to the
corresponding concept for the category of abstract Cu-semigroups. We also show how
ideals constitute a particular situation of normal admissible pairs.

5.1 (Ideals). Let (S,≺) be a W-semigroup. A subset I of S is an ideal (or a W-ideal)
provided that I is a subsemigroup of S such that 0 ∈ I and a ≺ b with b ∈ I implies
that a ∈ I. We say that an ideal I is closed provided that a ∈ I whenever a≺ ⊆ I.

We may also characterize closed ideals in terms of the induced order ≤≺, as follows.
A subsemigroup I containing 0 of S is a closed ideal provided that a ≤≺ b with b ∈ I
implies that a ∈ I, and also that a ∈ I whenever a≺ ⊆ I. In particular, if a + b ∈ I,
then since a ≤≺ a+ b, we obtain that a ∈ I.

Given an ideal I of S, we define its closure is I = {a ∈ S : a≺ ⊂ I}. By using axioms
(W1) and (W3), one may check that I is a closed ideal containing I, and that I = I
precisely when I is closed.

We shall denote the lattice of ideals by IdLatW(S) and the lattice of closed ideals by
LatW(S).

We have that LatW(S) ⊆ IdLatW(S), and the closure operation just described yields
a retract cl : IdLatW(S)→ LatW(S), by taking cl(I) = I.

Lemma 5.2. Let (S,≺) be a W-semigroup, and let αS = (≺,≤≺). Then, I is a closed
ideal of S if, and only if, I is a closed ideal of SαS . Therefore, there is a natural
identification

LatW(S) = LatW(SαS ) = LatW(S/αS).

Proof. Suppose that I is a closed ideal of S. Let a ∈ I and x, z ∈ S be such that
x ≤≺ z ≺ a. Then z ∈ I since I is an ideal of S, whence z≺ ⊂ I. This implies that
x≺ ⊂ I and, since I is closed, we obtain x ∈ I. This shows that I is also an ideal of
SαS . That I is also closed follows from the observation that, for any x ∈ S, we have
x≺ ⊂ x≤≺◦≺.

Conversely, suppose that I is a closed ideal of SαS . Let a ∈ I and x ∈ S be such that
x ≺ a. Then x ≤≺ x ≤ a, and thus x ∈ I, hence I is an ideal of S. To verify it is also a
closed ideal, suppose that a≺ ⊂ I for some a ∈ S. Then a ∈ I once we show that also
a≤≺◦≺ ⊂ I and use that I is closed in (S,≤≺ ◦ ≺). To see this, let x, y ∈ S be such that
x ≤≺ y ≺ a, and find z ∈ S such that y ≺ z ≺ a. Then z ∈ I since a≺ ⊂ I and, as
x ≤≺ y ≺ z, we have x ∈ I. �
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We now recall the axioms used to define the category Cu of abstract Cuntz semigroups
as introduced in [CEI08]. These model the completion Cu(A) of the classical Cuntz
semigroup W(A) for a (local) C*-algebra A; see [APT18, Theorem 3.2.8].

5.3 (The category Cu). An abstract Cuntz semigroup, or also a Cu-semigroup, is a
positively ordered monoid S satisfying the following axioms, where � is the compact
containment relation, as defined in Paragraph 2.5:

(O1) Every increasing sequence (ak)k in S has a supremum supk ak in S.
(O2) Every element a ∈ S is the supremum of a sequence (ak)k such that ak � ak+1

for all k.
(O3) If a′, a, b′, b ∈ S satisfy a′ � a and b′ � b, then a′ + b′ � a+ b.
(O4) If (ak)k and (bk)k are increasing sequences in S, then supk(ak + bk) = supk ak +

supk bk).
Given Cu-semigroups S and T , a Cu-morphism f : S → T is a map that preserves
addition, order, compact containment and suprema of increasing sequences. We let
Cu be the category whose objects are Cu-semigroups and whose morphisms are Cu-
morphisms. Note that, for a Cu-semigroup S and a, b ∈ S, we have a ≤ b if and only if
a� ⊂ b�.

A Cu-semigroup is a W-semigroup, and a Cu-morphism is a W-morphism ([APT18,
Lemma 3.1.4]). In fact, the category Cu is a full reflective subcategory of W ([APT18,
3.1.5]).

An ideal of a Cu-semigroup S is by definition an order-hereditary subsemigroup I of
S which is also closed under suprema of increasing sequences (see [APT18, 5.1.1]). We
shall denote by LatCu(S) the lattice of ideals of S. The relation between these categories,
also in the light of group actions, is revisited in Section 9, where we will relate the lattice
of ideals of a W-semigroup S with that of its completion.

We say that a W-semigroup S satisfies (O1) if S is closed under suprema of increasing
sequences with respect to the preorder ≤≺ induced by ≺.

Notice that, if S satisfies (O1) and the relation ≺ is stronger than the way-below
relation, then any closed ideal is also closed under suprema of increasing sequences.
Indeed, if I is such a closed ideal and (an) is an increasing sequence in I, let a = sup an.
For c ≺ a, find using (W1) an element c′ ∈ S such that c ≺ c′ ≺ a. By our assumption
on ≺ there is n such that c′ ≤≺ an, and thus c ≺ an. This implies that c ∈ I and, since
c is arbitrary in a≺ and I is closed, we obtain a ∈ I.

The converse of the above statement, in other words, that an ideal closed under
suprema of increasing sequences must be closed, holds if S satisfies (W2). Thus, in
particular these concepts are equivalent for Cu-semigroups.

5.4 (Ideals and normal pairs). Let (S,≺) be a W-semigroup, and let I be an ideal of S.
Given a, b ∈ I, we write a ≤I b provided that, for any x ≺ a, there is y ∈ I such that
x ≺ b+ y. We write αI = (≺,≤I), SI = SαI , and S/I = S/αI .

In the converse direction, given an admissible pair α = (≺,≤) on a W-semigroup
(S,≺), write Iα = {a ∈ S : a ≤ 0}.

We now explore the relationship between these two notions.

Lemma 5.5. Let (S,≺) be a W-semigroup. Then:
(i) If α = (≺,≤) is an admissible pair on S, then Iα is an ideal of S, which is closed

if α is left ≺-closed.
(ii) If I is an ideal, then ≤I is a preorder and αI is an admissible ≺-normal pair.
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(iii) If I is an ideal and α = (≺,≤) an admissible pair such that ≺ ◦ ≤ ⇒ ≺, then
I ⊆ Iα if and only if αI ≤ α. In particular, I ⊆ IαI and αIα ≤ α. Finally, If I is
a closed ideal, then I = IαI .

Proof. (i): It is clear that Iα is a subsemigroup since 0 is an idempotent element. If now
a ≺ b and b ∈ Iα, we have b ≤ 0 and as α is admissible we have a ≤ b ≤ 0, that is, a ≤ 0.

Now assume that α is left ≺-closed and that a≺ ⊆ Iα. If c ≺ a, choose c′ such that
c ≺ c′ ≺ a. Since by assumption c′ ≤ 0, we have (c, 0) ∈≺ ◦ ≤, and since α is closed and
c ≺ a is arbitrary, this implies that (a, 0) ∈≤≺ ◦ ≤. Using again that α is admissible,
we have ≤≺ ⇒ ≤, and thus a ≤ 0, that is, a ∈ Iα.

(ii): The fact that ≤I is a preorder and additively closed follows from the fact that I
is a subsemigroup. To show that αI is an admissible pair, suppose that a≤I◦≺ ⊆ b≤I◦≺.
We must show that a ≤I b. To this end, let x ≺ a and choose z such that x ≺ z ≺ a.
Since z ≤I z ≺ a, there is by assumption an element w with z ≤I w ≺ b. Now, using
that x ≺ z ≤I w we find y′ ≺ y ∈ I with x ≺ w + y′ ≺ b+ y.

Finally, to see that αI is ≺-normal, we need to check that ≤I is ≺-continuous. Suppose
that a ≺ b ≤I c. Choose b′ such that a ≺ b′ ≺ b. Then there is y ∈ I such that b′ ≺ c+y.
Apply (W4) to obtain c′ ≺ c and y′ ≺ y (hence y′ ∈ I) such that b′ ≺ c′ + y′. Now, we
have that a ≺ b′ ≤I c′ ≺ c.

(iii): Suppose first that I ⊆ Iα. To prove that αI ≤ α it suffices to show that ≤I ⇒ ≤;
see Lemma 3.5 (i). Assume that a ≤I b. Since α is admissible, it is enough to show that
a≺ ⊆ b≺. Let x ≺ a. Then there is y ∈ I such that x ≺ b + y. Using (W4), we find
b′ ≺ b and y′ ≺ y such that x ≺ b′ + y′. Since y ∈ I ⊆ Iα and y′ ≺ y, we conclude from
the assumptions that y′ ≺ 0. Thus x ≺ b.

Conversely, suppose that αI ≤ α, and let a ∈ I. If x ≺ a, clearly x ≺ 0 + a, that is,
a ≤I 0. Thus a ≤ 0, hence a ∈ Iα.

In particular, since αI = αI we get I ⊆ IαI ; and since Iα = Iα, we get αIα ≤ α.
Assume finally that I is closed. We already have that I ⊆ IαI . Now let a ∈ IαI and

let x ≺ a. Since a ≤I 0, there is b ∈ I such that x ≺ 0 + b = b, and since I is an ideal
we have x ∈ I. Thus a≺ ⊆ I and as I is closed, this implies a ∈ I. �

5.6 (Galois connections). Recall that, given posets S and T , a Galois connection between
S and T consists of a pair of order-preserving functions f : S → T and g : T → S such
that g(f(a)) ≤ a and f(g(b)) ≤ b for any a ∈ S and b ∈ T .

Let (S,≺) be a W-semigroup. Let us denote by Ad(S) the poset of admissible pairs,
by Adn(S) the poset of ≺-normal admissible pairs, and by Adc(S) the poset of ≺-closed
admissible pairs. We write Adnc(S) = Adn(S) ∩Adc(S).
Proposition 5.7. Let (S,≺) be a W-semigroup. Consider the assignments

ϕ : IdLatW(S)→ Ad(S) and ψ : Ad(S)→ IdLatW(S)

given by I ϕ7−→ αI and α
ψ7−→ Iα. If S satisfies (O1), ≺ ◦ ≤ ⇒ ≺, and ≺ ⇒�, then ϕ

and ψ yield a Galois connection between LatW(S) and Adnc(S).
Proof. In general, the assignments in the statement are given by Lemma 5.5. By (ii)
and (iii) in said lemma, if I is a closed ideal, then αI is an admissible ≺-normal pair
and ψ(ϕ(I)) = IαI = I. Again by Lemma 5.5 (i), (iii), if α is a ≺-normal closed pair,
then Iα is a closed ideal and ϕ(ψ(α)) = αIα ≤ α.

We need to prove that if I satisfies (O1), then αI is left ≺-closed. This will be the
case, in particular, if I is closed, S satisfies (O1), and ≺ ⇒� as in the assumption; see
the comments in Paragraph 5.1.



DYNAMICAL CUNTZ SEMIGROUP AND IDEAL-FREE QUOTIENTS 23

Suppose now that I is closed under suprema of increasing sequences with respect to
the preorder ≤≺. Fix any a, b ∈ S such that a′ ≺ ◦ ≤I b for any a′ ∈ a≺. Let be (ak)k be
an upward directed and cofinal sequence in a≺ as given by (W1). By our assumption,
there is a sequence (ck)k in I such that ak ≺ b + ck for every k. Since the sequence
(c1 + · · · + ck)k is increasing in I with respect to ≤≺, we may find a supremum c in I.
It follows that, if a′ ≺ a, then a′ ≺ b+ c, and thus a ≤I b, as desired. �

Corollary 5.8. Let S be a Cu-semigroup. Then the poset category of closed ideals of S
embeds as a full coreflective subcategory of the poset category of normal closed pairs on
S, via the assignment I 7→ αI = (�,≤I).

Proof. It follows from Lemma 5.5 that the assignment ϕ : I → αI is an injective order-
embedding (by using ψ : α → Iα)) so one can view the poset category of closed ideals
as a full subcategory of the poset category of normal closed pairs. To see that it is a
correflective subcategory, we need to check that, if I is a closed ideal and α is a closed
normal pair, we have ϕ(I) ≤ α if and only if I ≤ ψ(α), which is immediate from the
arguments in Proposition 5.7. �

Corollary 5.9. If S is a Cu-semigroup, and I is a closed ideal of S, then the quotient
S/I as defined in [APT18, Section 5.1] agrees with the quotient S/αI .

We conclude this section with a discussion on how taking quotients by pairs or by
ideals are related in the context of Cu-morphisms, in particular those induced by *-
homomorphisms between C*-algebras.

5.10 (Kernels of Cu-morphisms). Let S, T be Cu-semigroups and let f : S → T be a Cu-
morphism. We defined in Paragraph 4.1 the kernel of f as ≤f= {(a, b) : f(a)� ⊆ f(b)�}
which, by virtue of (O2), agrees with {(a, b) : f(a) ≤ f(b)} = f∗(≤). Recall that the
kernel pair of f is, by definition, ker(f) = (�,≤f ), which is a closed pair by Proposi-
tion 4.2.

Let Iker(f) be the closed ideal corresponding to ker(f), and notice that Iker(f) =
f−1({0}). Indeed, we have Iker(f) = {a ∈ S : a ≤f 0} = {a ∈ S : f(a) ≤ 0} = f−1({0}).

As far as *-homomorphisms between C*-algebras are concerned, the case of surjective
∗-homomorphisms is well understood. In this case it suffices to consider ideals of Cu-
semigroups, as opposed to more general normal pairs. We shall revisit the following, in
the presence of group actions; see Theorem 10.8.

Theorem 5.11 ([CRS10, Theorem 4.1]). Let I be a σ-unital ideal of a C*-algebra A.
Then the short exact sequence

0→ I
ι−→ A

ϕ−→ A/I → 0
induces a short exact sequence of Cu-semigroups and Cu-morphisms

0→ Cu(I) Cu(ι)−−−→ Cu(A) Cu(ϕ)−−−−→ Cu(A/I)→ 0 ,
i.e., the Cu-morphism Cu(ι) is injective, the Cu-morphism Cu(ϕ) is surjective, and
Cu(ι)

(
Cu(I)

)
= Cu(ϕ)−1(0). �

Moreover, one has that Cu(A/I) ∼= Cu(A)/Cu(I).

On the other hand, for injective *-homomorphisms, the case when the image is a
hereditary C*-subalgebra (e.g., an ideal), is also well understood. It does not involve
the use of quotients.



24 JOAN BOSA, FRANCESC PERERA, JIANCHAO WU, AND JOACHIM ZACHARIAS

Proposition 5.12 (c.f., e.g., [APT20a]). Let ϕ : A→ B be a *-homomorphism between
C*-algebras. If ϕ is injective and ϕ(A) is a hereditary C*-subalgebra of B, then the
induced Cu-morphism Cu(ϕ) : Cu(A)→ Cu(B) is injective. �

It is general *-homomorphisms (whose images may not be hereditary C*-subalgebras)
that call for the use of normal pairs.

Theorem 5.13. Let ϕ : A → B be a *-homomorphism between C*-algebras. Assume
the kernel ker(ϕ) is a σ-unital ideal of A. We decompose ϕ as

A
ϕ //

πker(ϕ) $$ $$

B

A/ ker(ϕ)
, � ϕ

::

where the arrows� and ↪→ indicate surjectivity and injectivity, respectively. Then, after
applying the functor Cu, we obtain following commutative diagram of Cu-morphisms:

Cu(A)
Cu(ϕ) //

Cu(πker(ϕ))
(( ((

πCu(ker(ϕ)) (( ((

Cu(B)

Cu(A/ ker(ϕ))

Cu(ϕ)
22

{[ϕ(a)] ∈ Cu(B) : a ∈ A⊗K}
' �

55

Cu(A)/Cu(ker(ϕ))

∼=

OO

// Cu(A)/ ker(Cu(ϕ))

∼=

OO

( �

HH

Cu(A)/Iker(Cu(ϕ))

where again the arrows � and ↪→ indicate surjectivity and injectivity, respectively.

Proof. On the left half of the diagram, the isomorphism

Cu(A)/Cu(ker(ϕ))
∼=−→ Cu(A/ ker(ϕ)) ,

as well as the commutative triangle involving it and Cu(A), comes from applying Theo-
rem 5.11 to the short exact sequence 0→ ker(ϕ)→ A→ A/ ker(ϕ)→ 0 of C*-algebras.
This theorem also gives Cu(ker(ϕ)) = Cu(ϕ)−1(0), which is equal to Iker(Cu(ϕ)) by the
observations in Paragraph 5.10; hence the equality

Cu(A)/Cu(ker(ϕ)) = Cu(A)/0ker(Cu(ϕ)) .

By (iii) in Lemma 5.5, it follows that αIker(Cu(ϕ)) ≤ ker(Cu(ϕ)) and note that

Cu(A)/αIker(Cu(ϕ)) = Cu(A)/Cu(ker(ϕ)),

hence there exists the map Cu(A)/Cu(ker(ϕ))→ Cu(A)/ ker(Cu(ϕ)) as appears in the
diagram. The left-hand part of diagram follows due to the universal property displayed
in Theorem 4.4 and Remark 4.5. �
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6. Generating prenormal pairs

In this section and the next, we discuss how to generate normal pairs from a given
relation, not necessarily a preorder, on a W-semigroup, beyond the ones given by ideals.
In preparation for this, we first discuss how to extend a W-preorder on a pointed set
(X, 0) by a given relation R on X, provided that R satisfies the appropriate continuity
requirement.

6.1 (The prenormal pair generated by a relation). Let (X, 0,≺) be a W-set and let R
be a left ≺-continuous relation on X, that is, a relation satisfying ≺ ◦R⇒ ≺ ◦R ◦ ≺.
We write EX(≺, R) for the collection of all preorders ≤ on X satisfying that, for all
a, b ∈ X, any of the following conditions implies a ≤ b:
(i) a≺ ⊆ b≺;
(ii) (a, b) ∈ R;
(iii) for any c ∈ a≺ , we have c ≤ b.
Observing that EX(≺, R) is closed under taking arbitrary intersections, we define ≤R to
be the smallest element in EX(≺, R) under set containment, i.e., the strongest preorder
satisfying the above conditions. We also define ≺R to be the composition ≤R ◦ ≺ ◦ ≤R.

Let us point out some simple consequences of our definition above. Notice first that,
for each preorder ≤ ∈ EX(≺, R), the corresponding pair (≺,≤) is admissible. Indeed,
suppose that a≤◦≺ ⊆ b≤◦≺ and let c ≺ a. Then c ≤ c ≺ a and thus there is d such that
c ≤ d ≺ b. By (i) above d ≤ b, hence c ≤ b. Thus, (iii) implies that a ≤ b.

Next, observe that, if R and R′ are two left ≺-continuous relation on X and R⇒ R′,
then we have EX(≺, R) ⊇ EX(≺, R′), and thus ≤R ⇒ ≤R′ and ≺R ⇒ ≺R′ .

The same conclusions as in the above paragraph hold if we weaken the hypothesis
R⇒ R′ to R⇒ (id∪R′)◦≤≺ , where recall that ≤≺ is the preorder defined by ≺, that is,
a ≤≺ b whenever a≺ ⊆ b≺. Here we exploit the fact that EX(≺, R′) consists of preorders.

Finally, the requirement that condition (iii) above implies a ≤ b can be replaced by
the requirement that (≺,≤) is left ≺-closed (see Paragraph 3.3). This is because the
other conditions already imply that ≤ ⇔ ≤≺ ◦ ≤.

Write αR = (≺,≤R) as well as α̃R = (≺R,≤R). We refer to αR as the ≺-prenormal
closed pair generated by R and to α̃R as the prenormal extension from ≺ by R. Our
terminology is justified by Corollary 6.3 below.

We will show that both αR and α̃R are ≺-prenormal admissible pairs, but in order to
do that, we need to give a more concrete description of ≤R.

Theorem 6.2. Let (X, 0,≺) be a W-set and let R be a left ≺-continuous relation on
X. For any a, b ∈ X, the following statements are equivalent:
(i) a ≤R b;
(ii) for any c ∈ a≺, we have either c ≺ b or else there are d1, . . . , dn and e1, . . . , en in

X such that
c ≺ d1Re1 ≺ d2Re2 ≺ . . . ≺ dnRen ≺ b .

Proof. We begin by observing that the condition in item (ii) may be conveniently written
in a more compact form as: for any c ∈ a≺, we have (c, b) ∈ ≺ ◦ (R ◦ ≺)◦N.

Let us now temporarily write a .R b for the relation defined by item (ii). We first
claim that .R is a preorder. Indeed, it is clear that .R is reflexive. In order to prove
transitivity, it suffices to show that for any a, b, and b′ in X, if a .R b and b .R b′,
then a .R b′. To this end, the hypothesis a .R b implies that, for any c ∈ a≺ , we have
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(c, b) ∈ ≺ ◦ (R ◦ ≺)◦N. Since this composite relation is equal to (≺ ◦ R)◦N ◦ ≺, there is
c′ ∈ b≺ such that (c, c′) ∈ (≺ ◦ R)◦N and c′ ≺ b. The hypothesis b .R b′ then implies
that (c′, b′) ∈ ≺ ◦ (R ◦ ≺)◦N. Merging these two, we have (c, b′) ∈ (≺ ◦ R)◦N ◦ ≺ ◦ (R ◦
≺)◦N ⇔ ≺ ◦ (R ◦ ≺)◦N. Since c is arbitrary in a≺ , we have a .R b′, as desired.

Thus, in order to prove the theorem it suffices to show that ≤R ⇔ .R.
(≤R ⇒ .R): By definition, ≤R is the strongest preorder satisfying the three con-

ditions in Paragraph 6.1 to define EX(≺, R), and thus we need to verify that .R also
satisfies them. To this end, note first that obviously a≺ ⊆ b≺ implies a .R b. Next
assume that a, b ∈ X satisfy (a, b) ∈ R. If c ≺ a, then we have (c, b) ∈≺ ◦R and, using
that R is ≺-continuous by assumption, this yields (c, b) ∈≺ ◦R ◦ ≺, and thus a .R b.
Finally, suppose that c .R b for any c ∈ a≺, and we have to show that a .R b. Take
c ∈ a≺, and find by (W1) an element c′ ∈ X such that c ≺ c′ ≺ a. Now by assumption
c′ .R b and since c ≺ c′, we get (c, b) ∈ ≺ ◦ (R ◦ ≺)◦N, as desired.

(.R ⇒ ≤R): It suffices to show from item (iii) in Paragraph 6.1 that c ≤R b for any
c ∈ a≺. For any such c, we have c .R b, that is, (c, b) ∈ ≺ ◦ (R ◦ ≺)◦N. But ≤R contains
both ≺ and R, again by construction. Therefore c ≤R b, as required. �

We recall here that a pair α = (4,≤) is admissible if a ≤ b whenever a≤◦4 ⊆ b≤◦4,
and that α is ≺-prenormal provided 4 is ≺-prenormal and ≤ is left ≺-continuous; see
Paragraphs 3.3 and 3.4.

Corollary 6.3. Let (X, 0,≺) be a W-set and let R be a left ≺-continuous relation on
X. Then
(i) αR and α̃R are ≺-prenormal admissible pairs.
(ii) αR ≤ α̃R.

Proof. We first establish the following somewhat technical statement (*) that will be
helpful to prove the rest of the conditions: ≺ ◦ ≤R ⇒ ≺ ◦ (R ◦ ≺)◦N ◦ ≺.

To see this, let a, b, c ∈ X be satisfying a ≺ b ≤R c. We use the formulation of
item (ii) at the beginning of the proof of Theorem 6.2 to obtain (a, c) ∈ ≺ ◦ (R ◦ ≺)◦N.
That is to say, (a, c) ∈ (≺ ◦R)◦N ◦≺. By (W1), we have ≺ ⇒ ≺ ◦≺, which implies that
(a, c) ∈ (≺ ◦ R)◦N ◦ ≺ ◦ ≺, i.e., there is c′ ∈ X such that a

(
≺ ◦ (R ◦ ≺)◦N

)
c′ ≺ c, as

desired.
Next, to show that αR and α̃R are ≺-prenormal, we must prove that ≺R = ≺R ◦≺ and

that ≤R is left ≺-continuous. We start with the latter: by definition (see Paragraph 6.1),
the relation ≺ ◦ (R ◦ ≺)◦N is stronger than ≺R, which at the same time is stronger than
≤R. Using (*), the conclusion follows.

We now show that ≺R = ≺R ◦ ≺ = ≤R ◦ ≺. We know that, by definition, ≺R ⇔ ≤R ◦
≺ ◦≤R. Thus, using (*) and the fact that ≺ ◦ (R ◦ ≺)◦N is stronger than ≤R, we obtain
≺R ⇒ ≤R ◦ ≺. That ≤R ◦ ≺ ⇒ ≺R follows from the fact that ≺ is idempotent, by
(W1), and stronger than ≤R. The implication ≺R ◦ ≺ ⇒ ≤R ◦ ≺ holds because ≺R is
stronger than ≤R. The converse implication is a direct consequence of (W1).

We verify that a≤R◦≺ ⊆ b≤
R◦≺ implies a ≤R b. From this it will follow that αR is an

admissible pair. We use the description of ≤R in Theorem 6.2. Thus, take c ≺ a and
choose by (W1) c′ with c ≺ c′ ≺ a. Then c′ ≤R c′ ≺ a and by assumption there is d such
that c ≤R d ≺ b. Therefore, either c ≺ d, or else there are elements d1, e1, . . . , dn, en
such that c ≺ d1Re1 ≺ d2Re2 ≺ . . . ≺ dnRen ≺ d ≺ b. Thus a ≤R b.

To show that α̃R is also admissible, it suffices to prove that a≤R◦≺R ⊆ b≤R◦≺R implies
a≤

R◦≺ ⊆ b≤
R◦≺ and apply the conclusion of the paragraph above. Thus, suppose that
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c, d ∈ X satisfy c ≤R d ≺ a. By definition of ≺R this implies that c ≤R d ≺R a, hence by
assumption there is e ∈ X such that c ≤R e ≺R b. Again by definition of ≤R, we may
find e′, b′ ∈ X such that c ≤R e ≤R e′ ≺ b′ ≤R b. By continuity of ≤R, there are elements
e′′, b′′ ∈ X such that e′ ≺ e′′ ≤R b′′ ≺ b. Putting all this together we obtain c ≤R b′′ ≺ b,
as desired. This concludes the proof of (i).

(ii) follows from Lemma 3.5 (i) and the fact that, by definition, we have ≺ ⇒ ≺R. �

We say that an admissible pair α = (≺,≤) contains a relation R provided R⇒ ≤.

Theorem 6.4. Let (X, 0,≺) be a W-set and let R be a left ≺-continuous relation on X.
Then αR is the smallest ≺-prenormal closed admissible pair containing R. Furthermore,
(X, 0,≺R,≤R) satisfies (W2).

Proof. We have already proved in Corollary 6.3 that αR is ≺-prenormal. To see that it
is also closed, we apply Proposition 3.6. Thus we have to check that α̃R = (≺R,≤R) is
≺-prenormal, minimal admissible, and auxiliary.

That α̃R is ≺-prenormal follows again from Corollary 6.3, and is clearly auxiliary.
Hence, we only need to show that ≺R induces ≤R, that is, for a, b ∈ X, we have a ≤R b
if and only if a≺R ⊆ b≺

R . The forward implication is clear. Suppose, conversely, that
c ≺ a. Then c ≺R a which by assumption implies c ≺R b. Thus c ≤R b. We have then
verified condition (iii) in Paragraph 6.1, and so a ≤R b.

By Proposition 3.6 and its proof, (X, 0,≺R,≤R) satisfies (W2).
Finally, let α = (4,≤) be a ≺-prenormal closed admissible pair containing R. We first

verify that ≤ belongs to EX(≺, R) and thus ≤R ⇒ ≤. To see this, we have to check that
≤ satisfies the conditions in Paragraph 6.1, of which (ii) is automatic. Now, suppose
that a≺ ⊆ b≺. Then, by prenormality we have 4 = 4 ◦ ≺, which implies a4 ⊆ b4 and,
since α is admissible, we obtain a ≤ b. Thus (i) is also satisfied. Next, if c ≤ b for any
c ≺ a, then for any such c choose c′ ∈ X such that c ≺ c′ ≺ a and we have c ≺ c′ ≤ b.
Since α is closed, there is d ∈ X such that a≺ ⊆ d≺ and d ≤ b. By what we just proved,
this implies that a ≤ d ≤ b. By Lemma 3.5 (i), we have αR ≤ α, as desired. �

The following corollary shows that repeated generations of prenormal pairs can be
contracted into a single one.

Corollary 6.5. Let (X, 0,≺) be a W-set and let R and R′ be left ≺-continuous relations
on X. Let (αR)R′ = (≺, (≤R)R′) be the ≺-prenormal pair generated by R′ and write
(≺R)R′ to mean (≤R)R′ ◦ ≺R ◦ (≤R)R′. Then (αR)R′ = αR ∪ R′ and (α̃R)R′ = α̃R ∪ R′.

Proof. We must prove that (≤R)R′ ⇔ ≤R ∪ R′ and (≺R)R′ ⇔ ≺R ∪ R′ .
We first show that (≤R)R′ and ≤R ∪ R′ agree. To show the former is stronger than the

latter, by definition of (≤R)R′ we need to verify that ≤R ∪ R′ satisfies conditions (i)-(iii)
defining EX(≺R, R′) as in Paragraph 6.1.

To verify condition (i), assume a≺
R ⊆ b≺

R . Then a ≤R b. Since we clearly have
EX(≺, R) ⊇ EX(≺, R ∪ R′), it follows that a ≤R ∪ R′

b. Condition (ii) is obvious since
R′ ⇒ R ∪ R′. For condition (iii), assume that c ≤R ∪ R′ for any c ∈ a≺R . If c ≺ a, then
in particular c ≺R a, and thus by definition of ≤R ∪ R′ we obtain a ≤R ∪ R′

b.
Next, to show that ≤R ∪ R′ is stronger than (≤R)R′ , we proceed similarly to verify that

(≤R)R′ satisfies conditions (i)-(iii) defining EX(≺, R ∪R′) as in Paragraph 6.1.
To check condition (i), observe that if a≺ ⊆ b≺, then a ≤R b which, as we have proved

in Theorem 6.4, means that a≺R ⊆ b≺
R . This implies that a(≤R)R′

b. Condition (ii)
follows from the clear containment R′ ⇒ (≤R)R′ , and also from R⇒ ≤R ⇒ (≤R)R′ .
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Finally, to verify condition (iii), assume that c(≤R)R′
b for any c ≺ a, and we need to

show that a(≤R)R′
b. To this end, let d ≺R a. We know from the proof of Corollary 6.3

that ≺R = ≤R ◦≺. Hence, there is c ∈ X such that d ≤R c ≺ a. By assumption this
implies that d ≤R c (≤R)R′

b, and thus d (≤R)R′
b. Since d is arbitrary in a≺

R , we have
a(≤R)R′

b, as desired.
Using the definitions of (≺R)R′ , ≺R, and ≺R ∪ R′ at the first, second, and last steps

respectively, the simple fact that (≤R)R′◦ ≤R ⇔ (≤R)R′ at the third step, and the
equivalence (≤R)R′ ⇔ ≤R ∪ R′ at the fourth step, we obtain

(≺R)R′ ⇔ (≤R)R′ ◦ ≺R ◦ (≤R)R′ ⇔ (≤R)R′ ◦ ≤R ◦ ≺ ◦ ≤R ◦ (≤R)R′

⇔ (≤R)R′ ◦ ≺ ◦ (≤R)R′ ⇔ ≤R ∪ R′ ◦ ≺ ◦ ≤R ∪ R′

⇔ ≺R ∪ R′
. �

Since it is cumbersome to deal with compositions of indefinite lengths, we discuss
when this can be avoided.

6.6 (Almost transitive relations). Let (X, 0,≺) be a W-set. A relation R on X is almost
transitive (or more precisely, ≺-almost transitive) if

≺ ◦R ◦ ≺ ◦R ◦ ≺ ⇒ ≺ ◦R ◦ ≺ .

It is clear that a transitive relation R is ≺-almost transitive provided that it satisfies
≺ ◦R⇒ R ◦ ≺ or R ◦ ≺ ⇒ ≺ ◦R.

Proposition 6.7. Let (X, 0,≺) be a W-set and let R be a left ≺-continuous relation
on X. If R is ≺-almost transitive, then for any a, b ∈ X, the following statements are
equivalent:
(i) a ≤R b;
(ii) for any c ∈ a≺, we have either that c ≺ b or else (c, b) ∈ ≺ ◦R ◦ ≺.

Moreover, if, in addition, we have id ⇒ R, then we may replace ≺ ∪ (≺ ◦ R ◦ ≺) by
≺ ◦R ◦ ≺ in the above.

Proof. Since R is almost transitive, we have ≺ ◦ (R ◦ ≺)◦2 ⇒ ≺ ◦ (R ◦ ≺)◦1. Applying
this inductively, we see that

≺ ◦ (R ◦ ≺)◦N ⇔ ≺ ∪ (≺ ◦R ◦ ≺).

In light of Theorem 6.2, this yields the desired equivalence.
For the statement after “moreover”, we simply use the equivalence ≺ ⇔ ≺◦≺ ⇔ ≺ ◦

id ◦≺. �

The following corollary shows how the usual Cuntz subequivalence on positive ele-
ments in a C*-algebra arises naturally from extending the W-preorder in Example 2.8 by
a kind of generalized Murray-von Neumann (sub-)equivalence. This answers a question
raised by G. A. Elliott.

Corollary 6.8. Let A be a C*-algebra. Let α = (�her,≤her) be the admissible pair on
(A+, 0) as in Example 2.8. Then the Cuntz subequivalence -Cu is the smallest preorder
≤ on A+ such that for all a, b ∈ A+, any of the following conditions implies a ≤ b:
(i) a ≤her b;
(ii) there exists x ∈ A such that a = xbx∗;
(iii) for any c ∈ a�her, we have c ≤ b.
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Proof. Let R be the relation on A+ defined so that (a, b) ∈ R if and only if there exists
x ∈ A such that a = xbx∗. Observe that R is left �her-continuous. Indeed, for any
a, b, c ∈ A+ satisfying a �her bRc, we find ε > 0 and x ∈ A such that a �her (b − ε)+
and b = x∗cx. Set L = max{1, ‖x∗x‖}. Then we have

x∗
(
c−

(
c− ε

L

)
+

)
x ≤ x∗

(
c−

(
c− ε

L

))
x = ε

L
x∗x ≤ ε ,

which implies

(x∗cx− ε)+ ≤
(
x∗cx− x∗

(
c−

(
c− ε

L

)
+

)
x

)
+

=
(
x∗
(
c− ε

L

)
+
x

)
+
≤ x∗

(
c− ε

L

)
+
x .

Hence, setting b′ = x∗
(
c− ε

L

)
+ x and c′ =

(
c− ε

L

)
+, we have a�her b

′, (b′, c′) ∈ R, and
c′ �her c, which shows R is left �her-continuous.

Since the “smallest preorder” defined in the statement of the corollary is ≤R applied
to the W-set (A+, 0,�her) as defined in Paragraph 6.1, we need to show that -Cu agrees
with ≤R. (Notice also that a ≤her if and only if a�her ⊆ b�her .)

To this end, we observe that R is�her-almost transitive. Suppose first that a, b, c, d ∈
A+ satisfy aRb, b �her c, and cRd. We claim that (a, d) ∈ ≤her ◦ R ◦ ≤her. Choose
x, y ∈ A such that a = xbx∗, c = ydy∗, and let ε > 0 such that b belongs to the
hereditary algebra generated by (c − ε)+. Let f be a continuous function such that
f(c) is a unit for (c − ε)+. Then f(c)bf(c) = bf(c) = b and thus b ≤ Nc for some
N . Therefore xbx∗ ≤ Nxcx∗ and thus it belongs to the hereditary algebra generated
by xcx∗. This implies that a ≤her xcx

∗, with xcx∗ = xyd(xy)∗, that is, xcx∗Rd. Thus
(a, d) ∈ ≤her ◦R ◦ ≤her, as claimed.

Using the above claim at the second step and that �her is auxiliary for ≤her at the
last step, we obtain
�her ◦ R ◦ �her ◦ R ◦ �her ⇒ �her ◦≤her◦ R ◦≤her◦ �her ⇒ �her ◦ R ◦ �her,

which shows that R is �her-almost transitive.
Now we verify that -Cu is equivalent to condition (ii) in Proposition 6.7. To see this,

assume that a -Cu b and let c �her a. Then c ∈ A(a− ε2 )+ for some ε > 0. Choose
x ∈ A and δ > 0 such that ‖(a − ε/2)+ − x(b − δ)+x

∗‖ < ε/2. This implies, using
[KR02, Lemma 2.2], that there is y ∈ A such that (a − ε)+ = y(b − δ)+y

∗. Thus
c�her (a− ε)+R(b− δ)+ �her b. Conversely, suppose that a, b satisfy condition (ii) in
Proposition 6.7, and let ε > 0. Then (a − ε)+ �her a and thus there exist c, d ∈ A+,
γ, δ > 0, and x ∈ A such that a − ε)+ ∈ A(c−γ)+ , c = xdx∗, and d ∈ A(b−δ)+ , which
clearly implies that a -Cu b. �

Remark 6.9. In Corollary 6.8, we may obtain equivalent formulations by making either
or both of the following replacements:

• Condition (iii) may be replaced by the following:
(iii’) there is an increasing sequence (an)n∈N in A+ whose supremum sup≤her

n an
with regard to ≤her exists and is equal to a, and an ≤ b for every n ∈ N.
(Here, ≤ is not to be confused with the natural order in A+.)

• Condition (ii) may be replaced by the following:
(ii’) there exists x ∈ A such that a = xx∗ and b = x∗x.
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7. Generating normal pairs

In this secion we build upon the work in Section 6 in order to extend pairs to normal
pairs on W-semigroups.

7.1 (The normal pair generated by a relation). Let (S,≺) be a W-semigroup and let R
be a left ≺-continuous relation on S. We write E+

S (R) for the collection of all preorders
≤ on S satisfying that, for all a, b ∈ S, any of the following conditions implies a ≤ b:
(i) a≺ ⊆ b≺;
(ii) (a, b) ∈ R;
(iii) for any c ∈ a≺, we have c ≤ b;
(iv) there are a1, a2, b1, b2 in S such that a = a1 + a2, b = b1 + b2, and ak ≤ bk for

k = 1, 2.
Observing that E+

S (R) is closed under taking arbitrary intersections, we define ≤R to
be the smallest element in E+

S (R) under set containment, i.e., the strongest pre-order
satisfying the above conditions. We also define ≺R to be the composition ≤R ◦≺R ◦≤R.

Write αR = (≺,≤R) as well as α̃R = (≺R,≤R). We refer to αR as the ≺-normal
closed pair generated by R and to α̃R as the normal extension from ≺ by R. Again our
terminology is justified below.

We write S//R for the quotient W-semigroup S/αR (that is, the antisymmetrization of
SαR

; see Paragraph 3.10). This generalizes the notion of the quotient of a Cu-semigroup
by a closed ideal (see [APT18, Section 5.1]).

The following lemmas show that the preorder ≤R can equivalently be induced by first
taking the additive closure of R (plus the identity relation id) and then applying the
construction in Paragraph 6.1 without any concern about the additive structure.

Lemma 7.2. Let (S,≺) be a W-semigroup and let R and R′ be left ≺-continuous rela-
tions on S. Then the sum R+R′ and the additive closure R+ are also left ≺-continuous.

Proof. It suffices to show that R+R′ is left ≺-continuous. To this end, let a, b, b′, c, c′ ∈ S
be such that a ≺ (b+ b′)(R+R′)(c+ c′). This means in particular that bRc and b′Rc′.
Using (W4), find b1, b

′
1 ∈ S such that b1 ≺ b, b′1 ≺ b′, and a ≺ b1 + b′1. Since both

R and R′ are left ≺-continuous, there are b2, b
′
2, c1, c

′
1 ∈ S with b1 ≺ b2Rc1 ≺ c and

b′1 ≺ b′2Rc′1 ≺ c′. This is now easily seen to imply that a ≺ (b2 + b′2)R(c1 + c′1) ≺ c+ c′,
as desired. �

Lemma 7.3. Let (S,≺) be a W-semigroup and let R be a left ≺-continuous relation on
S. Then the preorders ≤R and ≤(R + id)+ (see Paragraph 6.1 and Paragraph 2.3) coincide.
Therefore αR = α(R + id)+.

Proof. We first show from the definitions that
E+
S (R) ⊆ E+

S ((R+ id)+) ⊆ ES(≺, (R+ id)+),
which implies that ≤R is weaker than ≤(R + id)+ . For the first inclusion, one only needs to
show that, if ≤ ∈ E+

S (R) and a, b ∈ S satisfy a((R + id)+)b, then a ≤ b. By definition,
there is n and aij , bij , for i = 1, . . . , n, j = 1, 2 such that ai1Rbi1, and ai2 = bi2, and
a =

∑
i

∑
j aij , b =

∑
i

∑
j bij . In particular, we get aij ≤ bij for all i, j and thus a ≤ b.

The second inclusion is trivial.
We next use the concrete realization of ≤(R + id)+ (see Theorem 6.2) to show that

≤(R + id)+ is additively closed, i.e., satisfies condition (iv) in Paragraph 7.1, which implies
that ≤R is equal to ≤(R + id)+ . In order to check this, assume that ai ≤(R + id)+ bi for
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i = 1, 2. If c ≺ a1 +a2, then using (W4) find c1, c2 ∈ S such that ci ≺ ai and c ≺ c1 + c2.
The only case of interest is when there are elements d(j)

i , e
(j)
i ∈ S, for j = 1, 2, and

i = 1, . . . , n such that

c1 ≺ d1
1(R+ id)+e

(1)
1 ≺ d1

2(R+ id)+e
(1)
2 ≺ · · · ≺ d(1)

n (R+ id)+e
(1)
n ≺ b1,

and similarly for c2 (notice that we can take the same length n for both c1 and c2). It
is then clear that

c1 + c2 ≺ (d1
1 + d

(2)
1 )(R+ id)+(e(1)

1 + e
(2)
1 )

≺ (d1
2 + d2

2)(R+ id)+(e(1)
2 + e

(2)
2 ) ≺ . . .

≺ (d(1)
n + d(2)

n )(R+ id)+(e(1)
n + e(2)

n ) ≺ b1 + b2,

as desired. �

Remark 7.4. We have (R+id)+ ⇔ R+ +id, since id is clearly additively closed. Hence
if id ⇒ R, then (R+ id)+ ⇔ R+.

Corollary 7.5. Let (S,≺) be a W-semigroup and let R be a left ≺-continuous relation
on S. Then, the pairs αR and α̃R are ≺-normal admissible and αR ≤ α̃R.

Proof. From Lemma 7.3 we have

αR = (≺,≤R) = (≺,≤(R + id)+)

and
α̃R = (≺R,≤R) = (≤R ◦ ≺ ◦ ≤R,≤R) = (≺(R + id)+ ,≤(R + id)+).

Thus the result follows from Lemma 7.2 and Corollary 6.3. �

Theorem 7.6. Let (S,≺) be a W-semigroup and let R be a left ≺-continuous relation
on S. Then αR is the smallest ≺-normal closed admissible pair that contains R.

Proof. It follows from Lemma 7.3 and Theorem 6.4 that αR is the smallest ≺-prenormal
closed admissible pair that contains (R+id)+. Since αR is additively closed by definition,
it is also a normal closed pair. Now let α = (4,≤) be another≺-normal closed admissible
pair that contains R. Since ≤ is additively closed we have that it must also contains
(R+ id)+ and thus αR = α(R + id)+ ≤ α. �

The quotient W-semigroup S//R enjoys the following universal property.

Theorem 7.7. Let (S,≺) be a W-semigroup and let R be a left ≺-continuous relation
on S. Write πR : S → S//R for the canonical surjection. Then for any W-morphism
f : S → T such that ker(f) contains R, there is a unique W-morphism f : S//R→ T/αT
such that παT ◦ f = f ◦ πR.

S

πR
��

f // T

παT
��

S//R
f

// T/αT

Moreover, the pair (S//R, πR) is the unique pair of a W-semigroup and a W-morphism
that satisfies the above universal property.
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Proof. Recall that ker(f) = (≺,≤f ), which is an admissible ≺-normal closed pair (see
Proposition 4.2). We need to show that αR ≤ ker(f) and then apply the fundamental
theorem for W-semigroups (see Theorem 4.4 and Remark 4.5). Since both αR and ker(f)
are ≺-normal, by Lemma 3.5(i) we only need to verify that ≤R ⇒ ker(f), which follows
from Theorem 7.6 using the assumption that ker(f) contains R. �

7.8 (Almost refinement). Recall from Paragraph 6.6 that a relation R on a semigroup
S is almost transitive if ≺ ◦ R ◦ ≺ ◦ R ◦ ≺ ⇒ ≺ ◦ R ◦ ≺. This was used successfully in
Proposition 6.7 to simplify the expression of the relation ≤R.

It is not clear whether almost transitivity passes to additive closures. However, below
we give a sufficient condition for this to happen (see Proposition 7.10). This condition
is also present in a number of situations.

We say a W-semigroup (S,≺) has almost refinement if, given a1, a2, a
′
1, a
′
2, b1, b2 ∈ S

such that a′i ≺ ai for i = 1, 2 and a1 + a2 ≺ b1 + b2, then there are elements xij ∈ S for
i, j = 1, 2 such that a′i ≺ xi1 + xi2 for i = 1, 2 and x1j + x2j ≺ bj for j = 1, 2.

It follows by induction that S has almost refinement if and only if for any integers
m,n ≥ 2 and any a1, . . . , am, a

′
1, . . . , a

′
m, b1, . . . , bn ∈ S satisfying a′i ≺ ai for i = 1, . . . ,m

and a1 + . . . + am ≺ b1 + . . . + bn, there are elements xij ∈ S for i = 1, . . . ,m and
j = 1, . . . , n such that a′i ≺ xi1 + . . .+ xin for i = 1, . . . ,m and x1j + . . .+ xmj ≺ bj for
j = 1, . . . , n.

More generally, a relation R on S has ≺-almost (m,n)-refinement for some positive
integers m and n if for any a1, . . . , am, a

′
1, . . . , a

′
m, b1, . . . , bn ∈ S satisfying a′i ≺ ai for

i = 1, . . . ,m and (a1 + . . .+ am) ≺ ◦ R ◦ ≺ (b1 + . . .+ bn), there are elements xij , yij ∈
S for i = 1, . . . ,m and j = 1, . . . , n such that a′i ≺ xi1 + . . . + xin, xij ≺ ◦ R ◦ ≺ yij ,
and y1j + . . .+ ymj ≺ bj for i = 1, . . . ,m and j = 1, . . . , n. We also say R has ≺-almost
refinement if it has ≺-almost (m,n)-refinement for any positive integers m and n.

It follows from the definition of a W-semigroup that the relation ≺ has ≺-almost
refinement if and only if S has almost refinement.

It is also an easy exercise to verify that, if S is a semigroup that has the Riesz decom-
position property and the Riesz refinement property, then S has the almost refinement
property. In particular, this is the case for S = W(A), where A is a C∗-algebra of real
rank zero and stable rank one (see, e.g. [Per97]).

The proof of the following lemma is routine.

Lemma 7.9. Let R be a relation on a W-semigroup (S,≺).
(i) If R has ≺-almost (m,n)-refinement for some positive integers m and n, then it

has ≺-almost (p, q)-refinement for any positive integers p ≤ m and q ≤ n.
(ii) If S has almost refinement and R has ≺-almost (m,n)-refinement and ≺-almost

(p, q)-refinement for some positive integers m, n, p, and q, then R has ≺-almost
(mp, nq)-refinement.

(iii) If S has almost refinement and R has ≺-almost (2, 1)-refinement and ≺-almost
(1, 2)-refinement, then R has ≺-almost refinement.

Proposition 7.10. Let (S,≺) be a W-semigroup having almost refinement. Let R be a
left ≺-continuous relation on S that has ≺-almost refinement. If R is ≺-almost transitive
in the sense of Paragraph 6.6, so are the additive closures R+ and (R+ id)+.

Proof. We prove the case for R+, that is, ≺ ◦ R+ ◦ ≺ ◦ R+ ◦ ≺ ⇒ ≺ ◦ R+ ◦ ≺, the
case for (R + id)+ being similar. To this end, fix a, b, ci, di, ej , fj ∈ S for i = 1, . . . ,m
and j = 1, . . . , n satisfying a ≺

∑m
i′=1 ci′ , ci R di,

∑m
i′=1 di′ ≺

∑n
j′=1 ej′ , ej R fj , and
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j′=1 fj′ ≺ b for all i and j. Applying (W4) and the left ≺-continuity of R (twice), we

obtain c′i, c
′′
i , d
′
i, e
′
i, e
′′
i , f
′
i ∈ S for i = 1, . . . ,m such that a ≺

∑m
i′=1 c

′
i′ , c′i ≺ c′′i , c′′i R d′i,

d′i ≺ di,
∑m
i′=1 di′ ≺

∑n
j′=1 e

′
j′ , e′j ≺ e′′j , e′′j R f ′j , and f ′j ≺ fj for all i and j.

Combining that S has almost refinement with a second usage of (W4), we find xij
and x′ij for i = 1, . . . ,m and j = 1, . . . , n such that d′i ≺

∑n
j′=1 x

′
ij′ , x′ij ≺ xij , and∑m

i′=1 xi′j ≺ e′j .
For i = 1, . . . ,m, since c′i ≺ ◦ R ◦ ≺

∑n
j′=1 x

′
ij′ and R has ≺-almost refinement,

there are yij and zij for i = 1, . . . ,m and j = 1, . . . , n such that c′i ≺
∑n
j′=1 yij′ ,

yij ≺ ◦ R ◦ ≺ zij , and zij ≺ x′ij .
Next, for j = 1, . . . , n, since

∑m
i′=1 xi′j ≺ ◦ R ◦ ≺ fj and R has ≺-almost refinement,

there are uij and vij for i = 1, . . . ,m and j = 1, . . . , n such that x′ij ≺ uij , uij ≺ ◦ R
◦ ≺ vij , and

∑m
i′=1 vi′j ≺ fj .

Also, for i = 1, . . . ,m and j = 1, . . . , n, since yij ≺ ◦ R ◦ ≺ ◦ R ◦ ≺ vij and R is
≺-almost transitive, there are wij and zij such that yij ≺ wij , wij R zij , and zij ≺ vij .

Finally, since

a ≺
m∑
i=1

c′i ≺
m∑
i=1

n∑
j=1

yij ≺
m∑
i=1

n∑
j=1

wij and
m∑
i=1

n∑
j=1

zij ≺
n∑
j=1

m∑
i=1

vij ≺
n∑
j=1

fj ≺ b,

we conclude that a ≺ ◦ R+ ◦ ≺ b, as desired. �

Corollary 7.11. Let (S,≺) be a W-semigroup, and let R be a left ≺- continuous relation
that has ≺-almost refinement and is ≺-almost transitive. Then, for any a, b ∈ S, we
have

a ≤R b ⇐⇒ for any c ∈ a≺, either c ≺ b or else (c, b) ∈ ≺ ◦ (R+ id)+ ◦ ≺.

Proof. Use Proposition 7.10, Lemma 7.3 and Proposition 6.7. �

8. Dynamical W-semigroups

In this section, we discuss the main example of our construction of ideal-free quo-
tient W-semigroups, namely dynamical W-semigroups, which are quotients associated
to group actions on W-semigroups. Throughout the section, the symbol G always stands
for a fixed (discrete) group.

8.1 (G-actions on W-semigroups). Let (S,≺) be a W-semigroup. A G-action on S is a
map α : G× S → S, denoted by (g, a) 7→ ga, such that
(i) If a ≺ b in S and g is an element of G, then ga ≺ gb.
(ii) g(a+ b) = ga+ gb, for g ∈ G and a, b ∈ S.
(iii) ea = a for any a ∈ S, where e ∈ G is the neutral element of G.
(iv) (gh)a = g(ha), for any g, h ∈ G and any a ∈ S.
A W-semigroup (respectively, Cu-semigroup) S, together with an action α from a group
G as above will be called a G-W-semigroup (respectively, G-Cu-semigroup). Observe
that a W-semigroup (respectively, Cu-semigroup) is just an {e} -W-semigroup (respec-
tively, {e} -Cu-semigroup) with the obvious action.

Given G-W-semigroups (S,≺S , G) and (T,≺T , G), we say that a map f : S → T is
an equivariant W-morphism if it is a W-morphism and satisfies f(ga) = gf(a) for any
a ∈ S.

If, in the above, the action on T is trivial, then we say that f is an invariant W-
morphism.
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8.2 (The dynamical Cuntz semigroup). Let (S,≺, G) be a G-W-semigroup and let ≈G

be the orbit equivalence relation, i.e., we write a ≈G b, for a, b ∈ S if a = gb for some
g ∈ G. Notice that ≈G is left ≺-continuous. Indeed, if a, b, c ∈ S and g ∈ G satisfy
a ≺ b = gc, then using (W1) to find a′ such that a ≺ a′ ≺ b, we have a ≺ a′, a′ ≈G g

−1a′,
and g−1a′ ≺ c.

We write ≤G for the normal closed preorder generated by ≈G (c.f., Paragraph 7.1),
i.e., it is the strongest preorder ≤ on S satisfying that, for all a, b ∈ S, any of the
following conditions implies a ≤ b:
(i) a≺ ⊆ b≺;
(ii) a = gb for some g ∈ G;
(iii) for any c ∈ a≺, we have c ≤ b;
(iv) there are a1, a2, b1, b2 in S such that a = a1 + a2, b = b1 + b2, and ak ≤ bk for

k = 1, 2.
Write αG = (≺,≤G), and S/G for the quotient W-semigroup S/αG, which we term the
dynamical W-semigroup associated to the action of G on S. We write πG : S → S/G for
the canonical surjection.

In the case of a C*-algebra A together with an action of a group G on A, we note
that this action extends naturally to W(A) by setting g · [a] = [g ·a], and W(A) becomes
in this fashion a G-W-semigroup, as is easy to verify. We set WG(A) := W(A)/G, and
refer to is as the dynamical Cuntz semigroup of A.

Corollary 8.3. Let (S,≺, G) be a G-W-semigroup. Then for any a, b ∈ S, the following
statements are equivalent:
(i) a ≤G b;
(ii) for any c ∈ a≺, we have c ≺ b or there are positive integers m and n, elements gij

in G and elements dij in S, for i = 1, . . . ,m and j = 1, . . . , n, such that

c ≺
n∑
j=1

d1j ,
n∑
j=1

g1jd1j ≺
n∑
j=1

d2j , . . .
n∑
j=1

gm−1,jdm−1,j ≺
n∑
j=1

dmj ,
n∑
j=1

gmjdmj ≺ b .

Moreover, if S has almost refinement, we can always assume m = 1 above, that is, the
chain of relations may be replaced by

c ≺
n∑
j=1

d1j ,
n∑
j=1

g1jd1j ≺ b .

Proof. The equivalence between (i) and (ii) follows from Theorem 6.2, Lemma 7.2,
Lemma 7.3, and Remark 7.4. For the last statement, assume that S has almost re-
finement, and observe that the relation ≈G satisfies ≺-almost refinement. To see this,
assume that a′i, ai, bj ∈ S, for i = 1, . . . , n, j = 1, . . . ,m satisfy a′i ≺ ai,

(a1 + · · ·+ an) ≺ ◦ ≈G ◦ ≺ (b1 + · · ·+ bn).

Thus, there are c, d ∈ S and g ∈ G such that (a1 + · · · + am) ≺ c, c = gd, and
d ≺ (b1 + . . . bm). Therefore g−1a1 + · · · + g−1am ≺ d ≺ (b1 + · · · + bn), and the
fact that S has almost refinement, combined with (W4), yields elements y′ij ≺ yij , for
i = 1, . . . ,m, j = 1, . . . , n such that g−1a′i ≺ y′i1 + · · ·+ y′in whereas y1j + · · ·+ ymj ≺ bj
for each i, j. Find by (W1) y′′ij such that y′ij ≺ y′′ij ≺ yij and set xij = gy′ij . Then it is
easy to verify that

a′i ≺ xi1 + · · ·+ xin, xij ≺ gy′′ij ≈G y
′′
ij ≺ yij , and y1j + . . . ymj ≺ bj ,
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as required.
Now apply Propositions 7.10, 6.7, and Lemma 7.3. �

Corollary 8.4. Let A be a C*-algebra with an action by a group G. Then the order on
the dynamical Cuntz semigroup W(A)/G as defined in Paragraph 8.1 is induced from the
smallest preorder - on M∞(A)+ such that for any a, b ∈M∞(A)+, any of the following
conditions implies a - b:
(i) a -Cu b;
(ii) a = g · b for some g ∈ G;
(iii) for any c ∈ a�Cu, we have c - b;
(iv) there are a1, a2, b1, b2 in M∞(A)+ such that a = a1 ⊕ a2, b = b1 ⊕ b2, and ak - bk

for k = 1, 2.

Proof. This follows from the definition given in Paragraph 7.1, Corollary 6.8, and Corol-
lary 6.5. �

Remark 8.5. In Corollary 8.4 (see also Remark 6.9), we may obtain equivalent formu-
lations of the order in WG(A) by the following replacements:

• Conditions (i) and (iii) may be replaced by the combination of the following
three conditions:
(i’) a -her b as in Example 2.8;
(ii’) there exists x ∈M∞(A) such that a = xbx∗.
(iii’) for any c ∈ a�her , we have c - b;
• Condition (ii’) may further be replaced by

(ii”) there exists x ∈M∞(A) such that a = xx∗ and b = x∗x.
• Condition (iii) may also be replaced by the following:
(iii”) there is an increasing sequence ([an])n∈N in W(A) whose supremum sup-Cu

n [an]
with regard to -Cu exists and is equal to [a], and an - b for every n ∈ N.

The (dynamical) W-semigroup S/G enjoys the following universal property.

Theorem 8.6. Let (S,≺S , G) be a G-W-semigroup and let (T,≺T ) be a W-semigroup.
Then for any invariant W-morphism f : S → T , there is a unique order-preserving W-
morphism fG : S/G → T/αT such that παT ◦ f = fG ◦ πG, i.e., the following diagram
commutes:

S

πG
��

f // T

παT
��

S/G
fG

// T/αT

Moreover, the pair (S/G, πG) is the unique pair of a W-semigroup and a W-morphism
that satisfies the above universal property.

Proof. This follows from Theorem 7.7. �

9. A categorical interlude

For many purposes, it is more convenient to work with Cu-semigroups than W-
semigroups. Fortunately, [APT18] provides a way to take a completion of a W-semigroup
and obtain a Cu-semigroup. In this section, we study how this Cu-completion behaves in
relation with dynamical W-semigroups. For this purpose, it is convenient to formulate
things in a categorical language.
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9.1 (Reflective subcategories). In the following, recall that a subcategory is full if for
any two objects in the subcategory, all morphisms between them in the ambient category
are also contained in the subcategory. A subcategory is reflective if the inclusion functor
has a left adjoint, called the reflector.

t follows from the theory of adjoint functors that a subcategory is reflective if for every
object Y in the ambient category, there is a universal morphism from Y to the inclusion
functor, i.e., a unique pair

(
Y , π

)
of an object Y in the subcategory and a morphism

π : Y → Y in the ambient category with the following universal property: for any object
X in the subcategory and every morphism f : Y → X in the ambient category, there
exists a unique morphism f : Y → X in the subcategory with f ◦ π = f , as indicated in
the following commutative diagram:

Y

π
��

f

��
Y

f

// X

where the bottom row is required to be in the subcategory. In this case, the reflector is a
functor that sends every object Y in the ambient category to Y in the subcategory, and
every morphism f : Y → Y ′ in the ambient category to a morphism f : Y → Y ′ in the
subcategory determined by applying the above universal property to the composition
π ◦ f as in the following commutative diagram:

Y

π
�� ��

f // Y ′

π
��

Y
f

// Y ′

Lemma 9.2. Let C be a category, D a subcategory of C, and E a subcategory of D. Then
the following holds:
(i) If ϕ : C → D is a reflector of the inclusion D ↪→ C and ψ : D → E is a reflector of

the inclusion E ↪→ D, then ϕ ◦ ψ : C → E is a reflector of the inclusion E ↪→ C.
(ii) If τ : C → E is a reflector of the inclusion E ↪→ C, then the restriction τ

∣∣
D : D → E

is a reflector of the inclusion E ↪→ D.
(iii) If θ, ζ : C → D are both reflectors of the inclusion D ↪→ C, then there is a natural

isomorphism between θ and ζ.

Proof. These follow directly from the comments in Paragraph 9.1. �

Recall that the category W consists of, as objects, all W-semigroups and, as mor-
phisms, all W-morphisms. It has a subcategory Cu consisting of, as objects, all Cu-
semigroups and, as morphisms, all Cu-morphisms. The exact relationship between W
and Cu was obtained in [APT18]. We recall it here by completeness.

Theorem 9.3 ([APT18, 3.1.5]). The category Cu is a full reflective subcategory of W.

The reflector γ : W → Cu was termed the Cu-completion functor (see [APT18], and
also [ABP11]). Now we add group actions into the picture.

9.4 (The categories G-W and G-Cu). Let G be a group. We let G-W be the category
that consists of, as objects, all G-W-semigroups and, as morphisms, all G-equivariant
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W-morphisms. It has a subcategory G-Cu consisting of, as objects, all G-Cu-semigroups
and, as morphisms, all G-equivariant Cu-morphisms. We naturally view W (respectively,
Cu) as a subcategory of G-W (respectively, G-Cu) by equipping every W-semigroup
(respectively, Cu-semigroup) the trivial G-action.

Note that the category G-W can be constructed from W by means of general category
theory. Indeed, an object in G-W is nothing but a tuple (S, η), where S is an object in
W and η = (ηg)g∈G is a homomorphism from G to the group of automorphisms of S in
W, while a morphism from (S, η) to (T, µ) in G-W is nothing but a morphism f from S
to T in W such that f ◦ ηg = µg ◦ f for any g ∈ G, that is, an equivariant W-morphism.

With this point of view, we have a functor ωG : G-W → W that sends every object
(S, η) in G-W to S/G (where the quotient is taken by the action induced by η). For
a morphism f in G-W, write ωG(f) = fG, as in Theorem 8.6. It follows from the
universal property that for any morphism f : (S, η) → (T, µ) in G-W, the morphism
fG : S/G→ T/G in W is the unique one that makes the following diagram commute:

S

πG
��

f // T

πG
��

S/G
fG

// T/G

Theorem 9.5. The category G-Cu is a full reflective subcategory of G-W, with reflector
γG : G-W→ G-Cu referred as to the G-Cu-completion functor.
Proof. This follows from Theorem 9.3 and Paragraph 9.4, where the reflector γG : G-W→
G-Cu sends every object (S, η) in G-W to

(
γ(S), (γ (ηg))g∈G

)
in G-Cu and sends every

morphism f in G-W, viewed as a morphism in W, to γ(f) in G-Cu. �

Lemma 9.6. For any object (S, η) in G-W, the pair (S/G, πG) is a universal morphism
from (S, η) to the inclusion functor W→ G-W.
Proof. This follows from Theorem 8.6 and Paragraph 9.1. �

Theorem 9.7. The category W is a full reflective subcategory of G-W, with the orbit
reflector being a reflector.
Proof. Fullness follows from the fact that every W-morphism is equivariant when the
domain and the codomain are equipped with the trivial action. Reflectivity via the orbit
functor follows from Lemma 9.6 and Paragraph 9.1. �

Corollary 9.8. The following statements are true:
(i) The category Cu is a full reflective subcategory of G-W, with the composition γ◦ωG

being a reflector.
(ii) The category Cu is a full reflective subcategory of G-Cu, with the composition

γ ◦
(
ωG
∣∣
G-Cu

)
being a reflector.

(iii) There is a natural isomorphism between the functors γ ◦
(
ωG
∣∣
G-Cu

)
◦γG and γ ◦ωG

from G-W to Cu, i.e., the following diagram commutes up to a natural isomor-
phism.

G-W
γG
��

ωG //W γ
(( Cu

G-Cu ωG
//W γ

66
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Proof. Consider the commutative diagram of inclusions of categories
Cu �
� //� _

��

W� _

��
G-Cu �

� // G-W
Then (i) follows from applying Lemma 9.2(i) to the inclusions Cu ↪→ W ↪→ G-W.
Furthermore, by Lemma 9.2(ii), the restriction (γ ◦ ωG)

∣∣
G-Cu = γ ◦

(
ωG
∣∣
G-Cu

)
is a

reflector of the inclusion Cu ↪→ G-Cu, i.e., (ii) holds. It then follows by Lemma 9.2(i)
again that γ ◦

(
ωG
∣∣
G-Cu

)
◦ γG is also a reflector of the inclusion Cu ↪→ G-W, which

implies (iii) by Lemma 9.2(iii). �

9.9 (The complete dynamical Cuntz semigroup). Let (S, η) be a G-W-semigroup. We
refer to the Cu-semigroup γ ◦ ωG(S, η) as the dynamical completion of (S, η). We have,
by Corollary 9.8(iii), a natural isomorphism

γ(S/η) = γ ◦ ωG(S, η) ∼= γ ◦ ωG ◦ γG(S, η) = γ(γG(S, η)/G).
We remark that we do not have at present an example of a G-Cu-semigroup (S, η) such
that S/G is not a Cu-semigroup.

If A is a G-C∗-algebra, we shall write CuG(A) := γ(W(A)/G), and call it the complete
dynamical Cuntz semigroup.

We have the following natural identification:

Corollary 9.10. Let A be a G-C∗-algebra. Then there is a natural isomorphism
CuG(A) = γ(W(A)/G) ∼= γ(Cu(A)/G).

Proof. We know from Paragraph 9.9 that CuG(A) ∼= γ(γG(W(A))/G). Now, γG(W(A))
is just γ(W(A)) with the induced action, according to Theorem 9.5. As shown in
[APT18, Theorem 3.2.8], we have that γ(W(A)) is naturally isomorphic to Cu(A). �

10. Invariant closed ideals

In this section we revisit the notion of ideal in the light of an action by a group G. We
identify the G-invariant ideals of a G-W-semigroup with ideals those of its corresponding
dynamical quotient. Using this, we conclude that, for a C*-dynamical system (A,G)
and a closed two-sided G-invariant ideal I, we have CuG(A)/CuG(I) ∼= CuG(A/I); see
Theorem 10.8.

10.1 (Simplicity and invariant ideals). Recall that, for a W-semigroup S, we denote by
LatW(S) the lattice of closed ideals. For any element a ∈ S, put

I(a) := {b ∈ S : for any b′ ≺ b there is n ∈ N such that b′ ≺ na},
which is the smallest closed ideal of S that contains a.

A non-zero element a in a W-semigroup S is an order-unit provided for any pair of
elements b, b′ ∈ S, with b′ ≺ b, there is n ∈ N such that b′ ≺ na. In other words, a is an
order-unit precisely when I(a) = S.

If S has no non-trivial closed ideals, then we say that S is simple. With this terminol-
ogy and our observations above, the fact that S is simple is equivalent to the demand
that every non-zero element is an order-unit.

Recall from Paragraph 5.4 that, given a closed ideal I, we set S/I = S/αI , where
αI = (≺,≤I) and a ≤I b provided that, whenever x ≺ a, there is y ∈ I such that
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x ≺ b+y. We also have shown that S/I is a W-semigroup and that the natural quotient
map π : S → S/I is a W-morphism. Recall that the relation ≺I in S/I making it a
W-semigroup is given by π(a) ≺I π(b) whenever a ≤I ◦ ≺ b

If S is a G-W-semigroup, a closed ideal I of S is said to be a G-W-ideal if, furthermore,
ga ∈ I whenever g is an element of G and a is an element of I. (Equivalently, GI = I.)
We shall denote the lattice of G-W-ideals of S by LatGW(S). We will say that the action
of G on S is minimal in case S does not have any non-trivial G-W-ideals. We show
below that this notion agrees with the one given by Rainone in [Rai16, Definition 3.4].
Now, assume that S is a G-W-semigroup S and a ∈ S. Let us define

IG(a) := {z ∈ S | for any z′ ≺ z there exist g1, . . . , gn ∈ G with z′ ≺
n∑
i=1

gia} .

It is easy to verify that IG(a) is the smallest G-W-ideal of S that contains a. Note that,
if G is acting trivially on S, then IG(a) = I(a). In this language, we have that the action
of G is minimal if and only if IG(a) = S for any nonzero a ∈ S.
10.2 (Completions). We have already mentioned in Theorem 9.3 that Cu is a full,
reflective subcategory of W, with a reflector functor γ : W→ Cu, which we briefly recall
as it will be used below.

Let (S,≺) be a W-semigroup. Consider S̄ = {(an) : an ≺ an+1 for all n}, and define
(an) - (bn) if, and only if, for each n there is m such that an ≺ bm. Put γ(S) = S̄/∼,
where ∼ is the antisymmetrization of -. It was shown in [APT18, Proposition 3.1.6]
that γ(S) is a Cu-semigroup with order ≤ induced by the relation -. The way-below
relation is given as follows: [(an)] � [(bn)] if and only if there is m such that an ≺ bm
for all n.

Given a ∈ S, choose by (W1) a countable cofinal subset (an) in a≺. This defines a
W-semigroup map γ : S → γ(S) by γ(a) = [(an)]. This map is an order-embedding in
the sense that a ≺ b if and only if γ(a)� γ(b), and is dense in the sense that, if b′ � b
in γ(S), then there is a ∈ S with b′ ≤ γ(a) ≤ b.

If S is a Cu-semigroup,we shall denote the lattice of Cu-ideals by LatCu(S), and if G
is a group that acts on S, then we denote the lattice of G-Cu-ideals by LatGCu(S).

We will need the following lemma:
Lemma 10.3. Let (S,≺) be a W-semigroup and let I be a closed ideal of S. Let
a, b, c, d ∈ S be such that a ≺ b, c ≺ d, and π(b) ≺ π(c), where π : S → S/I is
the quotient map. Then, there are elements b′, c′, d′ ∈ S with a ≺ b′ ≺ c′ ≺ d′ and
π(c′) = π(c), π(d′) = π(d)
Proof. By assumption, π(b) ≺ π(c), hence we have b ≤I b0 with b0 ≺ c. Since a ≺ b,
there is by definition of ≤I an element y ∈ I such that a ≺ b0 + y. Using (W4), we find
elements b′0 ≺ b0 and y′ ≺ y such that a ≺ b′0 + y′. Also, using (W1), choose y′′ ∈ S
with y′ ≺ y′′ ≺ y.

Since b′0 ≺ b0 ≺ c and y′ ≺ y′′, we have by (W3) that b′0 + y′ ≺ c + y′′. Now let
b′ = b′0 + y′, c′ = c+ y′′, and d′ = d+ y. �

Proposition 10.4. Let S be a W-semigroup. The completion functor γ induces an ideal
lattice isomorphism

γ : LatW(S)→ LatCu(γ(S)) given by I 7→ γ(I).
This isomorphism respects quotients in the sense that, for any I ∈ LatW(S) we have a
Cu-isomorphism γ(S)/γ(I) ∼= γ(S/I).
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Furthermore, if G acts on S (and therefore also on γ(S); see Corollary 9.8), this
isomorphism restricts to an isomorphism

LatGW(S) ∼= LatGCu(γ(S))
that also respects quotients.

Proof. Let I be a W-ideal. Notice first that an element [(an)] in γ(S) belongs to γ(I) if
and only if an belongs to I for all n ∈ N. Using this, it is easy to conclude that γ(I) is
a Cu-ideal of γ(S). Observe also that, in case I is a G-W-ideal, its image γ(I) is clearly
also a G-Cu-ideal.

For W-ideals I and J in S, we have γ(I) ⊆ γ(J) if and only if I ⊆ J . For, assume that
γ(I) ⊆ γ(J) and a is an element in I. Choose by (W1) a countable cofinal ≺-increasing
sequence (an) in a≺. Then [(an)] belongs to γ(I), and thus by assumption (an) ⊆ J .
Since J is a closed ideal, we have a ∈ J , and thus I ⊆ J .

Next, let K be an ideal of γ(S). Define I := {a ∈ S : γ(a) ∈ K}, where γ : S → γ(S) is
the natural map. We claim that I is a closed W-ideal of S and γ(I) = K. By definition,
γ(I) ⊆ K, and it is also clear that I is a W-subsemigroup. If a ≺ b in S and b ∈ I,
then γ(a) � γ(b) and thus γ(a) belongs to K, that is, a belongs to I. Suppose that
a≺ ⊆ I for some a ∈ S. Let x ∈ γ(S) be such that x� γ(a). Then, there is a′ ≺ a such
that x � γ(a′) � γ(a). Since a′ ∈ I, we have that x ∈ K. Thus γ(a)� ⊆ K, and this
implies that a ∈ I.

Any element inK, viewed in γ(S), is a supremum of an increasing sequence of elements
of the form γ(a), for a ∈ S. Hence, all such elements belong to K, that is, K ⊆ γ(I),
and consequently K = γ(I).

Let us finally check that the functor γ respects quotients. Let I ∈ LatW(S). Since γ
is a functor, we have a Cu-morphism

γ(S)→ γ(S/I), [(an)] 7→ [(π(an))],
where π : S → S/I is the quotient map.

We claim it is surjective. Let x = [(π(an))] ∈ γ(S/I) be any element. Since π(a1) ≺
π(a2), there is an element a′2 such that a′2 ≺ a2 and π(a1) ≺ π(a′2) ≺ π(a2). Also, there
is an element a′3 ∈ S with a′3 ≺ a3, and such that π(a2) ≺ π(a′3) ≺ π(a3). Thus, for each
n we find elements a′n ≺ an with π(an−1) ≺ π(a′n) ≺ π(an). Clearly, the sequence

(π(a′2), π(a2), π(a′3), π(a3), π(a′4), π(a4), . . . )
also represents x. Therefore, changing notation, we may assume at the outset that
a2n−1 ≺ a2n for each n ≥ 1.

Now apply Lemma 10.3 to a1, . . . , a4 to find elements b1, b2, b3, b
′
4 with b1 = a1, b1 ≺

b2 ≺ b3 ≺ b′4, and π(b3) = π(a3), π(b′4) = π(a4). A second application of Lemma 10.3, to
b3, b

′
4, a5, a6 yields elements b4, b5, b

′
6 with b3 ≺ b4 ≺ b5 ≺ b′6, and π(b5) = π(a5), π(b′6) =

π(a6). Continuing in this way, we get a ≺-increasing sequence (bn) such that [(π(bn))] =
[(π(an))] = x, hence the map γ(S)→ γ(S)/γ(I) is surjective, as claimed.

Finally, to prove that γ(S)/γ(I) ∼= γ(S/I), we need to verify that [(an)] ≤γ(I) [(bn)]
in γ(S) if, and only if, [(π(an))] ≤ [(π(bn))] in γ(S/I).

First assume that [(an)] ≤γ(I) [(bn)]. Then, there is [(cn)] ∈ γ(I) such that [(an)] ≤
[(bn)] + [(cn)] in γ(S). Applying π we obtain [(π(an))] ≤ [(π(bn))].

Conversely, by a standard argument we may assume that [(π(an))]� [(π(bn))], and we
need to show that [(an)] ≤γ(I) [(bn)]. In this case, there is m such that π(an) ≺ π(bm) for
all n. Since, for a given n, we have an ≺ an+1, there is cn ∈ I such that an ≺ bm + cn.
Using (W1), choose a ≺-increasing sequence (an,i) in a≺n such that an−1 ≺ an,1. As
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an,1 ≺ an, there is cn,1 ≺ cn with an,1 ≺ bm + cn,1. Likewise, there is c′n,2 ≺ cn with
an,2 ≺ bm + c′n,2. By using (W1), we may choose cn,2 ≺ cn such that cn,1, c′n,2 ≺ cn,2.
We thus find a ≺-increasing sequence (cn,k) in I with an,k ≺ bm + cn,k for all k. Set
xn = [(cn,k)k] ∈ γ(I), and x =

∑∞
n=1 xn ∈ γ(I).

It was shown in [APT18, Proposition 3.1.6] that [(ak)k] = sup[a(n)], where a(n) =
(a1, . . . , an−1, an,1, an,2, . . . ). By our construction above, we have

[a(n)] ≤ [(bk)k] + [(cn,k)k] ≤ [(bk)k] + x,

and this implies that [(ak)] ≤ [(bk)] + x, as desired. �

It is clear from the above that the action of a group G on a W-semigroup S is minimal
if and only if that is the case for γ(S).

Proposition 10.5. Let G be a group, let (S,≺) be a G-W-semigroup, and denote by
πG : S → S/G the natural map. Then
(i) If I is a closed G-W-ideal I of S, then πG(I) = I/G is naturally identified with a

closed ideal of S/G.
(ii) πG induces a lattice isomorphism LatGW(S) ∼= LatW(S/G). In particular, the action

of G is minimal if and only if S/G is simple.
(iii) For I as in (i), the quotient map π : S → S/I induces an isomorphism

(S/G)/(I/G) ∼= (S/I)/G.

Proof. (i): We clearly have a well defined map I/G→ S/G given by [a] 7→ [a]. We need
to show that [a] ≺ [b] in S/G with b ∈ I implies a ∈ I and that [a]≺ ⊆ I/G implies
a ∈ I.

If [a] ≺ [b] with b ∈ I, then by definition a ≤G b′ ≺ b for some b′ ∈ I. Let a′ ≺
a. Then, either a′ ≺ b′, in which case a′ ∈ I, or else there are n,m, and elements
x0, x

′
0 . . . , xn, x

′
n ∈ S with xi =

∑m
j=1 dij , x

′
i =

∑m
j=1 gijdij , for some elements gij ∈ G,

and such that x′i ≺ xi+1 for each i < n, a′ ≺ x0, and x′n ≺ b′; see Corollary 8.3. Since
b′ ∈ I, we have that x′n ∈ I, hence gnj ∈ I for all j. Using that I is a G-W-ideal, we
get dnj ∈ I for all j, whence xn ∈ I. Thus by a recursive argument we arrive at a′ ∈ I.
This shows that a≺ ⊆ I, hence a ∈ I since I is closed.

Now suppose that [a]≺ ⊆ I/G. If a′ ≺ a, then [a′] ≺ [a], hence [a′] = [b] for b ∈ I,
and thus in particular a′ ≤G b

′, for some b′ ∈ I. As in the paragraph above, this implies
that a′ ∈ I, whence a ∈ I.

(ii): Using (i), we have a map LatGW(S) → LatW(S/G) given by I 7→ πG(I). The
inverse is given by K 7→ π−1

G (K), for any closed ideal K of S/G. It is routine to verify
that these assignments are inverse for one another.

(iii): By functoriality applied to the natural map πI : S → S/I (see Paragraph 9.4),
we have a W-morphism (πI)G : S/G → (S/I)/G, given by (πI)G([a]) = [πI(a)], which
is clearly surjective. Put J = I/G. We claim that, for x, y ∈ S/G, we have x ≤J y if
and only if (πI)G(x) ≤ (πI)G(y) in (S/I)/G. This clearly implies that (πI)G induces an
order-isomorphism.

Write x = [a], y = [b] for a, b ∈ S, and assume first that [a] ≤J [b]. Let z ≺ [πI(a)] in
(S/I)/G. Then, there are elements a′, a′′ ∈ S such that a′ ≺ a′′ ≺ a and z ≺ [πI(a′)].

Since also [a′′] ≺ [a] in S/G and [a] ≤J [b], there is an element b′ ∈ S with b′ ≺ b,
and an element c ∈ I such that [a′′] ≤ [b′] + [c] in S/G, that is, a′′ ≤G b′ + c. Arguing
as in the paragraph above, and using Corollary 8.3, since a′ ≺ a′′, we have that either
a′ ≺ b′+c, and thus πI(a′) ≺ πI(b) or else there are n,m and elements, denoted again by
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x0, x
′
0 . . . , xn, x

′
n ∈ S, with xi =

∑m
j=1 dij , x

′
i =

∑m
j=1 gijdij , for some elements gij ∈ G,

and such that x′i ≺ xi+1 for each i < n, a′ ≺ x0, while xn ≺ b′. This clearly implies that
πI(a) ≤G πI(b), hence (πI)G([a]) ≤ (πI)G([b]) in (S/I)/G.

Conversely, suppose that πI(a) ≤G πI(b), and let z ≺ [a] in S/G. Choose elements
a′, a′′ ∈ S such that a′ ≺ a′′ ≺ a. We proceed as above, using Corollary 8.3 and
assuming m = 1 (the general case follows applying induction on m), hence we assume
that there are elements πI(d1), . . . , πI(dn) ∈ S/I and g1, . . . , gn ∈ G such that πI(a′′) ≺∑
j πI(dj) = πI(

∑
j dj), and

∑
j gjπI(di) = πI(

∑
j gjdi) ≺ π(b). In particular this implies

that, in S, we have a′′ ≤I
∑
j d
′
j for some d′j ≺ dj and

∑
j gjdj ≤I b′, for b′ ≺ b.

Now, by definition of ≤I , since a′ ≺ a′′ and abusing notation, there are elements
x′ ≺ x in I with

a′ ≺
∑
j

d′j + x′.

Choose x′′, x′′′ with x′ ≺ x′′ ≺ x′′′ ≺ x. Choose d′′j such that
∑
j gjd

′
j ≺

∑
j gjd

′′
j ≺∑

j gjdj . Since
∑
j gjd

′′
j ≺

∑
j gjdj , there is b′′ ∈ S with b′′ ≺ b′ and elements y′, y ∈ I

with y′ ≺ y such that
∑
j gjd

′′
j ≺ b′′ + y′. Let c = x+ y, which is an element in I.

We claim that a′ ≤G b
′ + c. Indeed, if ã ≺ a′, then

ã ≺
n∑
j=1

d′j + x′.

Also, with gn+1 = e ∈ G,∑
j

gjd
′
i + gn+1x

′ ≺
∑
j

gjd
′′
j + x′′ ≺ b′′ + x′′′ + y′ ≺ b′ + c.

Therefore [a′] ≤ [b′] + [c] in S/G, and consequently [a′] ≤J [b]. This implies, as a′ ≺ a is
arbitrary, that [a] ≤J [b]. �

Corollary 10.6. Let S be a G-W-semigroup, and let πG : S → S/G denote the natural
map. For any a ∈ S, we have

πG(IG(a)) = I([a]).

Proof. Let b be an element in IG(a) and let x ∈ S/G be such that x ≺ [b]. Then there is
b′ ∈ S with b′ ≺ b and x ≺ [b′]. By definition of IG(a), there are elements g1, . . . , gn ∈ G
such that b′ ≺

∑
i gia. Then x ≺ [b′] ≤ n[a], by condition (ii) in the second part of

Paragraph 8.1. This implies that [b] ∈ I([a]).
Conversely, notice that [a] ∈ πG(IG(a)) as a ∈ IG(a) and since πG(IG(a)) is an ideal

of S/G by Proposition 10.5, it follows that I([a]) ⊆ πG(IG(a)). �

Remark 10.7. It is easy to adapt the argument used in [CRS10, Proposition 1] to show
that, if A is a C∗-algebra and I a closed, two-sided ideal, then W(A)/W(I) ∼= W(A/I)
as W-semigroups.

Theorem 10.8. Let A be a C∗-algebra, and let G be a discrete group acting on A.
For any G-invariant ideal I of A, we have that WG(I) and CuG(I) are (isomorphic to)
ideals of WG(A) and CuG(A), respectively. Moreover,

WG(A)/WG(I) ∼= WG(A/I) and CuG(A)/CuG(I) = CuG(A/I).

Proof. We know that W(I) is a G-W-ideal of W(A), and thus WG(I) is a W-ideal of
WG(A), by Proposition 10.5. On the other hand CuG(I) = γ(WG(I)), and by Proposi-
tion 10.4 is a Cu-ideal of CuG(A).
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Using Proposition 10.5 at the first step and Remark 10.7 at the second step, we obtain:
WG(A)/WG(I) ∼= (W(A)/W(I))/G ∼= (W(A/I))/G = WG(A/I).

Finally, applying Proposition 10.4 at the second step, we obtain
CuG(A)/CuG(I) = γ(WG(A))/γ(WG(I)) ∼= γ(WG(A)/WG(I))

∼= γ(WG(A/I)) ∼= CuG(A/I). �

11. Dynamical strict comparison

In this section, we introduce the notion of dynamical strict comparison for abstract
G-W-semigroups and the corresponding notion for C*-algebras acted upon by a group.

11.1 (States and functionals). Given a preordered semigroup (S,≤), we shall denote
by St(S) the set of states on S, that is, the set of those additive, zero- preserving, and
order-preserving maps λ : S → [0,∞]. If (S,≺) is a W-semigroup, we equip it with the
induced preorder a ≤≺ b (defined by a≺ ⊂ b≺), and it is natural to consider those states
λ : S → [0,∞] which satisfy the condition that λ(a) = sup

a′≺a
λ(a′). We shall refer to these

states as W-functionals, and denote this set by FW(S). In general functionals are not
required to preserve the relation ≺ and thus are not necessarily W-morphisms.

Given a state λ on a W-semigroup S, we may define λ̄ by λ̄(a) = sup
a′≺a

λ(a′). It is

then easy to verify that λ̄ belongs to FW(S) and λ̄ ≤ λ, with equality precisely when
λ ∈ FW(S); see the arguments in [Rør92, Proposition 4.1].

If now G is a group acting on a preordered semigroup S, we define the set of G-
invariant states as

StG(S) = {λ ∈ St(S) | λ(ga) = λ(a) for all a ∈ S} .
When S is a G-W-semigroup, we shall use the notation FG

W(S) to refer to the subset of
FW(S) consisting of those W-functionals that are moreover G-invariant.

Next, let S be a Cu-semigroup. Recall that, in this context, a functional on S is a state
λ : S → [0,∞] that further preserves suprema of increasing sequences. We denote, as
customary, the set of all functionals on S by F(S), which is a compact convex Hausdorff
space, as shown in [ERS11, Theorem 4.8] (see also [Rob13]), with the following topology:
a net (λi)i∈I in F(S) converges to λ in F(S) provided

lim sup
i∈I

λi(a′) ≤ λ(a) ≤ lim inf
i∈I

λi(a)

for any elements a′, a ∈ S with a′ � a.
If S is a W-semigroup, the precise relationship between FW(S) and F(γ(S)) is given via

the natural completion morphism γ : S → γ(S), as shown below. (See Paragraph 10.2)

Proposition 11.2. Let (S,≺) be a W-semigroup. Then:
(i) There is an affine homeomorphism FW(S) ∼= F(γ(S)).
(ii) If, further, S is a G-W-semigroup and πG : S → S/G is the natural map, then the

assignment λ 7→ λ ◦ πG defines an affine homeomorphism FW(S/G) ∼= FG

W(S). In
particular, if S is a G-Cu-semigroup, then F(γ(S/G)) ∼= FG(S).

Proof. (i): For λ ∈ FW(S), define λ̃ ∈ F(S) as follows: given a ∈ γ(S), choose a ≺-
increasing sequence (an) such that a = sup γ(an), and set

λ̃(sup γ(an)) = supλ(an).
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This is well defined, for if a = sup γ(an) = sup γ(bn), for ≺-increasing sequences (an)
and (bn), then for each n, there is m such that γ(an) � γ(bm), whence an ≺ bm. This
implies that λ(an) ≤ λ(bm), and thus supn λ(an) ≤ supm λ(bm). By symmetry we have
equality.

It is clear that λ̃ is additive and the argument above shows it is also order-preserving.
To show that it preserves suprema of increasing sequences, we may use the argument in
[AABP23, Proposition 3.5], based in turn on how suprema are constructed in γ(S); see
[APT18, Proposition 3.1.6] for further details.

Conversely, given µ ∈ F(γ(S)), define r(µ) on S by restriction, that is, r(µ)(a) =
µ(γ(a)). We clearly have that r(µ) is additive. Observe that, by construction of γ(S),
we have γ(a) = supa′≺a γ(a′) for all a ∈ S. This implies that r(µ) is order-preserving
and, since µ preserves suprema, we also have

r(µ)(a) = µ(sup
a′≺a

γ(a′)) = sup
a′≺a

µ(γ(a′)) = sup
a′≺a

r(µ)(a′)

and thus r(µ) ∈ FW(S).
Now, if λ ∈ FW(S) and λ̃ is as in the first part of the proof we have, for a ∈ S, that

r(λ̃)(a) = λ̃(γ(a))) = λ̃(sup
a′≺a

γ(a′)) = sup
a′≺a

λ(a′) = λ(a),

and hence r(λ̃) = λ.
Conversely, given µ ∈ F(γ(S)), write λ := r(µ) and then, for each a ∈ γ(S) written

as a = sup γ(an) for a ≺-increasing sequence in S, we have

λ̃(a) = supλ(an) = sup r(µ)(an) = supµ(γ(an)) = µ(sup γ(an)) = µ(a).

This shows that the assignments λ 7→ λ̃ and µ 7→ r(µ) are inverses for one another. It
is easy to verify that both assignments are also affine.

Finally, if we equip FW(S) with the topology under which a net (λi)i∈I converges to
λ precisely when

lim sup
i∈I

λi(a′) ≤ λ(a) ≤ lim inf
i∈I

λi(a)

for any elements a′, a ∈ S with a′ ≺ a, it follows that what we have defined is a
homeomorphism.

(ii): Since πG is a W-morphism, given λ ∈ FW(S/G), we have that λ ◦ πG ∈ FW(S).
Next, take a ∈ S and g ∈ G. Then by construction we have [ga] = [a] in S/G, and
thus λ(πG(ga)) = λ(a). This shows that λ ◦πG belongs to FG

W(S) and therefore the map
Λ: FW(S/G)→ FG

W(S) given by Λ(λ) = λ ◦ πG is well defined.
Now, let λ̄ ∈ FG

W(S) be given. For a ∈ S, put λ([a]) = λ̄(a). Let us check that
λ ∈ FW(S/G). First, if [a] ≤ [b], that is, a ≤G b, and c ≺ a, then by Corollary 8.4 either
c ≺ b or else there are n,m and elements x0, x

′
0 . . . , xn, x

′
n ∈ S with xi =

∑m
j=1 dij , x

′
i =∑m

j=1 gijdij , for some elements gij ∈ G, and such that x′i ≺ xi+1 for each i < n, c ≺ x0,
and x′n ≺ b. Since λ̄ is G-invariant, this clearly implies that λ̄(x′i) = λ̄(xi) for all i
and thus λ̄(c) ≤ λ̄(b). Now use that λ̄(a) = sup

c≺a
λ̄(c) to conclude that λ̄(a) ≤ λ̄(b)

and therefore λ is well defined and order-preserving. It is easy to verify that λ([a]) =
sup
x≺[a]

λ(x), and also that Λ is an affine homeomorphism.

For the second part of the statement, applying (i) at the first and last step, and (ii)
at the second step, we get

F(γ(S/G)) ∼= FW(S/G) ∼= FG

W(S) ∼= FG(S) �
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Remark 11.3. We have kept our approach above as it gives details of the exact cor-
respondence. One can however apply results about W-morphisms to deal with W-func-
tionals, in particular to obtain a shorter, more conceptual proof for Proposition 11.2.
To do so, take the Cu-semigroup M∞ defined in [APT20a, Example 4.14] and check
that FW(S) = W(S,M∞) and also that F(γ(S)) = Cu(γ(S),M∞). (It was shown in
[APT20a, Proposition 4.15] that M∞ ∼= Cu(N) for every II∞-factor N .) Now, using
the fact that M∞ is a Cu-semigroup and that Cu is a reflexive subcategory of W at the
second step, we obtain

FW(S) = W(S,M∞) ∼= Cu(γ(S),M∞) = F(γ(S)).
We also get, applying Theorem 8.6,

FW(S/G) = W(S/G,M∞) ∼= WG(S,M∞) = FG

W(S).
11.4 (Dynamical strict comparison for G-W-semigroups). We say that a W-semigroup
(S,≺) has strict comparison provided the following condition holds: for a, b ∈ S with
a ∈ I(b), if λ(a) < λ(b) for all λ ∈ FW(S) with λ(b) <∞, it follows that a≺ ⊂ b≺.

It follows from arguments in, for example, [Rør92] or [Rør04, Proposition 3.2], that
this is equivalent to the property of almost unperforation in S: for a, b ∈ S, if (k+1)a ≺
kb for some natural number k, then a≺ ⊂ b≺. A related but stronger property is that
of unperforation: for a, b ∈ S, if ka ≺ kb for some natural number k, then a≺ ⊂ b≺.

In a similar manner, we say that a G-W-semigroup S has dynamical strict comparison
provided the following condition holds: for a, b ∈ S with a ∈ IG(b), if λ(a) < λ(b) for all
λ ∈ FG

W(S) with λ(b) <∞, it follows that a ≤G b.
A Cu-semigroup S is almost unperforated if (k+ 1)a ≤ kb, for a, b ∈ S implies a ≤ b.

Using the construction of the completion γ(S) for any W-semigroup (S,≺) as sketched
in Paragraph 10.2, it is a routine exercise to check that (S,≺) is almost unperforated if,
and only if, so is γ(S).
Proposition 11.5. Let S be a G-W-semigroup. Then, the following conditions are
equivalent:
(i) S has dynamical strict comparison.
(ii) For a, b ∈ S with a ∈ IG(b), if λ(a) < λ(b) for all λ ∈ StG(S) such that λ(b) = 1,

then a ≤G b.
(iii) S/G is almost unperforated.
(iv) γ(S/G) is almost unperforated.
Proof. (i)⇐⇒ (ii): This is easy to verify.

(ii) =⇒ (iii): Suppose that, for elements [a] and [b] ∈ S/G and k ∈ N, we have
(k + 1)[a] ≺ k[b]. If x ≺ [a], then (k + 1)x ≺ (k + 1)[a] ≺ k[b], and since x is arbitrary,
this implies that [a] ∈ I([b]). Thus, by Corollary 10.6 there is c ∈ IG(b) with [a] = [c].
Replacing a by c, we may assume that a belongs to IG(b).

Let a′ ∈ S with a′ ≺ a. Then, since (k + 1)[a] ≺ k[b] there is b′ ∈ IG(b) with b′ ≺ b
such that (k + 1)a′ ≤G kb

′. Therefore, for any λ ∈ StG(S) such that λ(b) = 1, we have
λ(a′) ≤ k

k+1λ(b′) < λ(b′) ≤ λ(b). By assumption, this implies that a′ ≤G b. Since a′ ≺ a
was arbitrary, we see that a ≤G b.

(iii) =⇒ (i): In order to verify that S has dynamical strict comparison, let a, b be
elements in S with a ∈ IG(b), and assume that λ(a) < λ(b) for any λ ∈ FG

W(S).
By Corollary 10.6, we have [a] ∈ I([b]). Take a′ ∈ S with a′ ≺ a. Then [a′] ≺ [a] and

thus there is k ∈ N with [a′] ≺ k[b]. Next, let µ be a state on S/G normalized at [b].
Put µ0 := µ ◦ πG, which defines a G-invariant state on S normalized at b, and let µ̄0
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be the functional defined as in Paragraph 11.1, that is, µ̄0(x) = sup
x′≺x

µ0(x′). Note that

µ̄0 ∈ FG

W(S). We have that µ̄0(b) ≤ 1 and using our assumption,

µ([a′]) = µ0(a′) ≤ µ̄0(a) < µ̄0(b) ≤ µ0(b) = µ([b]) .

Since S/G is almost unperforated, this implies that [a′] ≺ [b] in S/G, that is, a′ ≤G b′

for some b′ ≺ b. As a′ ≺ a is arbitrary, we obtain a ≤G b, as desired.
That (iii) and (iv) are equivalent has been observed in Paragraph 11.4. �

11.6 (Quasitraces). For a C*-algebra A, recall that a quasitrace on A is a map τ : A+ →
[0,∞] such that τ(0) = 0, τ(xx∗) = τ(x∗x) for any x ∈ A, and τ(a + b) = τ(a) + τ(b)
for any a, b ∈ A+ with ab = ba. A quasitrace τ on A is a 2-quasitrace if it extends to a
quasitrace τ2 onM2(A) with τ2(a⊗e11) = τ(a) for any a ∈ A+. It is lower semicontinuous
if τ(a) = supt>0 τ((a − t)+) for all a ∈ A+. We will denote by QT2(A), or simply by
QT(A), the set of lower semicontinuous 2-quasitraces. By [BK04, Remark 2.27(viii)],
any lower semicontinuous 2-quasitrace has a unique extension to a lower semicontinuous
n-quasitrace τn on Mn(A) with τn(a⊗e11) = τ(a) for any a ∈ A+. By [ERS11, Theorem
4.4], there is a homeomorphism between QT(A) and F(Cu(A)). More precisely, given
a lower semicontinuous 2-quasitrace τ on A, the corresponding functional is given by
[a] 7→ dτ (a), where dτ : Cu(A)→ [0,∞] is given by [a] 7→ limn→∞ τ(a1/n).

If A is a C*-algebra andG is a group acting on A, the above correspondence restricts to
a one-to-one correspondence between the G-invariant functionals FG(Cu(A)) on Cu(A)
and G-invariant 2-quasitraces on A, which will be denoted by QTG(A).

11.7 (C*-Dynamical strict comparison). Let G be a discrete group that acts on a C*-
algebra A. We say that A has dynamical strict comparison provided [a] ≤ [b] in WG(A)
whenever dτ (a) < dτ (b) for any G-invariant 2-quasitrace τ . This is equivalent to the
fact that W(A) has dynamical strict comparison in the sense of Paragraph 11.4. In
turn, this is equivalent to saying that WG(A) (or CuG(A)) is almost unperforated; see
Proposition 11.5.

We also say that A is dynamically unperforated provided that WG(A) is unperforated
(equivalently, if CuG(A) is unperforated).

Corollary 11.8. Let G be a discrete group acting on a C*-algebra A, let I be a G-
invariant ideal of A, and let h ∈ A+ be a G-invariant element. Then:
(i) If A has dynamical strict comparison, then so do I and A/I.
(ii) If A is dynamically unperforated, then so are I, A/I, and hAh.

Proof. (i): That A has dynamical strict comparison is equivalent, by Proposition 11.5, to
the fact that WG(A) is almost unperforated. Now it is trivial to verify that this condition
passes both to ideals and quotients. Thus, WG(I) and WG(A)/WG(I) are both almost
unperforated. Since the latter is isomorphic to WG(A/I), by Theorem 10.8, we conclude
that I and A/I have dynamical strict comparison.

(ii): That I and A/I are dynamically unperforated follows by an argument as in (i).
Now, given a G-invariant h ∈ A+, we have that B := hAh is stably isomorphic to

the ideal I generated by h, which is G-invariant and, by the first part of the proof, is
dynamically unperforated. As in Corollary 9.10, we have

CuG(I) ∼= γ(WG(I ⊗K)) ∼= γ(WG(B ⊗K)) ∼= CuG(B),

and thus B is also dynamically unperforated. �
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Given a discrete group G acting on a C*-algebra A, one can use the universal property
of the dynamical Cuntz semigroup (see Theorem 8.6) to obtain the following commuta-
tive diagram, where the top arrow is induced by the natural embedding ι : A→ AoG
and κ := γ(ιG)

Cu(A) ι //

πG
��

Cu(ι(A)) ⊆ Cu(AoG)

Cu(A)/G

γ

��

ιG

55

CuG(A)

κ

;;

11.9 (Soft elements). If S is a Cu-semigroup, we will call an element a ∈ S soft if, given
a′ � a, there is k ∈ N such that (k + 1)a′ ≤ ka. This is the weakest of three versions
of softness, as considered in [TV24, Definition 4.3], and referred there as “functional
softness”. This condition was already considered in [APT18, Definition 5.3.1]. It fol-
lows from [TV24, Proposition 4.6, Corollary 4.7] that all notions of softness agree for
residually stably finite C*-algebras.

Let us denote by Ssoft the subset of soft elements, which is always a subsemigroup of S
by [APT18, Theorem 5.3.11] that satisfies (O1). For a simple, stably finite, C*-algebra,
Cu(A)soft is actually a Cu-semigroup, as follows from [APT18, Proposition 5.3.18].

It is well known and easy to show that a Cu-morphism maps soft elements to soft
elements.

Proposition 11.10. Let S be a G-Cu-semigroup, let T be a Cu-semigroup, and let
f : S → T be an invariant Cu-morphism such that the induced map F(T ) → FG(S)
is surjective. If S/G is almost unperforated, then the restriction of the induced map
γ(fG) : γ(S/G) → T to the subsemigroup of soft elements satisfies that, if a, b are soft
with a ∈ I(b) and γ(fG)(a) ≤ γ(fG)(b), then a ≤ b.

Proof. Write ϕ = γ(fG). Let a, b be soft elements in γ(S/G) with a ∈ I(b) and let a′ � a.
Then, there is k ∈ N such that (k + 1)a′ ≤ ka, and thus (k + 1)ϕ(a′) ≤ kϕ(a) ≤ ϕ(b).

Now take any functional λ ∈ F(T ). We have (k + 1)λ(ϕ(a)) ≤ kλ(ϕ(b)), hence
(λ ◦ ϕ)(a) < (λ ◦ ϕ)(b).

Using our assumption on functionals we have that any functional on γ(S/G) has the
form λ ◦ ϕ, for some functional λ on T . Therefore, since γ(S/G) is almost unperated
and a ∈ I(b), we obtain that a ≤ b. �

Theorem 11.11. Let G be a discrete group acting minimally on a C*-algebra A. If A
has dynamical strict comparison, then the Cu-morphism κ|CuG(A)soft is an order embed-
ding.

Proof. Upon identification of CuG(A) with γ(Cu(A)/G), the assumption that A has
dynamical strict comparison means that CuG(A) is almost unperforated (see Proposi-
tion 11.5).

Therefore, in order to apply Proposition 11.10, we need to check that the induced
map F(Cu(A o G)) → FG(Cu(A)) is surjective. We may identify QT(A o G) with
F(Cu(A o G)) and QTG(A) with FG(Cu(A)); see the comments in Paragraph 11.6.
Thus, we have to prove that the natural map QT(AoG)→ QTG(A) is surjective. Let
E : A o G → A be the conditional expectation. If τ is a G-invariant quasitrace on A,
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then we have that τ̃ := τ ◦ E is a quasitrace on A o G that restricts to τ . Thus the
natural map is surjective, as was to be shown. �
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pus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain

Email address: francesc.perera@uab.cat
URL: https://mat.uab.cat/web/perera

JW, Shanghai Center for Mathematical Sciences, Fudan University, 2005 Songhu Rd.,
Shanghai 200438, China

Email address: jianchao wu@fudan.edu.cn

JZ, School of Mathematics and Statistics University of Glasgow , University Place
Glasgow G12 8QQ United Kingdom

Email address: joachim.zacharias@glasgow.ac.uk
URL: https://www.maths.gla.ac.uk/˜jzacharias/


	1. Introduction
	1.1. General (ideal-free) quotients of W-semigroups
	1.2. Dynamical Cuntz semigroups
	1.3. Applications: dynamical strict comparison and the Cuntz semigroup of a crossed product

	2. Preliminaries
	3. Normality
	4. The fundamental theorems
	5. Ideals
	6. Generating prenormal pairs
	7. Generating normal pairs
	8. Dynamical W-semigroups
	9. A categorical interlude
	10. Invariant closed ideals
	11. Dynamical strict comparison
	Acknowledgements
	References

