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Abstract. We introduce and study a notion of pureness for ∗-homomorphisms

and, more generally, for cpc. order-zero maps. After providing several exam-

ples of pureness, such as ‘Z-stable’-like maps, we focus on the question of when
pure maps factor through a pure C∗-algebra.

We show that, up to Cuntz equivalence, any composition of two pure maps

factors through a pure object. This is used to obtain several factorization
results at the level of C∗-algebras.

1. Introduction

The classification of unital separable simple nuclear non-elementary C∗-algebras
by their K-theory and tracial data, also known as the Elliott classification program,
has been one of the major developments in the theory of operator algebras in the
past 40 years. A landmark achievement, obtained as the collaborative effort of many
hands and decades of work (see, among many others, [EGLN, TWW17, Win12]),
states that any such C∗-algebra A can be classified by the so-called Elliott invari-
ant as long as A is Z-stable (i.e. it absorbs the Jiang-Su algebra tensorially) and
satisfies the universal coefficient theorem (UCT). Some of the first results in the
Elliott classification program relied heavily on the inductive limit presentation of
the algebras under consideration; however, the modern approach to classification
exploits conditions that are more abstract in nature. One such condition is Winter’s
notion of pure C*-algebras, which were defined in [Win12] as those algebras that
are both almost divisible and almost unperforated. This notion is deeply connected
to Z-stability, as stated explicitly in the famous Toms-Winter conjecture: For uni-
tal separable simple nuclear non-elementary C∗-algebras, the conditions of almost
unperforation, Z-stability and finite nuclear dimension should all coincide. The
conjecture is by now largely a theorem [CET+21, BBS+19, Rør04, Win12], with
the only remaining implication being if almost unperforation implies Z-stability.
If true, pureness and Z-stability agree for all unital separable simple nuclear C∗-
algebras. However, it should be noted that Z-stability and pureness do not agree
in general, with the latter then becoming an important regularity property on its
own right; see [APTV24].

The current approaches to the classification program classify C∗-algebras by
classifying maps. In such results, strong conditions are only imposed either on
the domain or codomain, while the assumptions on the other side tend to be
milder. One important example of this phenomenon is Robert’s classification of ∗-
homomorphisms from 1-dimensional NCCW-complexes with trivial K1-group (and

Date: 27 June 2024.

2020 Mathematics Subject Classification. Primary 46L05; Secondary 19K14, 46L80.
All authors were partially supported by MINECO (grant No. PID2020-113047GB-

I00/AEI/10.13039/501100011033), and by the Comissionat per Universitats i Recerca de la Gen-

eralitat de Catalunya (grant No. 2021SGR01015). The first author was also partially supported
by the Consolidación Investigadora grant (CNS2022-135340) provided by Ministerio de Ciencia,
Innovación y Universidades (Gobierno de España). The second author was also supported by the
Fields Institute for Research in Mathematical Sciences and by the Knut and Alice Wallenberg

Foundation (KAW 2021.0140).
1



2 JOAN BOSA, EDUARD VILALTA

their inductive limits) to stable rank one C∗-algebras via the Cuntz semigroup
[Rob12]. This semigroup is a rich invariant for C∗-algebras, which plays a crucial
role in both Elliott’s program and the Toms-Winter conjecture. Robert’s theorem
has been an important tool in recent classification results, and can be regarded as
an example where the result for ∗-homomorphisms is much more powerful than its
induced result for C∗-algebras. A recent groundbreaking development along these
lines can be found in [CGS+23], where unital embeddings from unital separable
nuclear C∗-algebras satisfying the UCT to unital simple separable nuclear Z-stable
C∗-algebras are classified. Further, a current trend in such results is to move the
conditions on the domain or codomain to the maps themselves. This can be seen,
for example, in the definition of O2-stable ∗-homomorphisms [Gab20], in the study
of O∞-stable ∗-homomorphisms run in [BGSW22], in the introduction of real rank
zero inclusions [GN23], and many others.

Inspired by this modern approach to classification —as well as by its importance
as a regularity property— in this paper we generalize the notion of pureness to
maps between C∗-algebras. Extending the original definition, we say that a cpc.
order-zero map (in particular, a ∗-homomorphism) θ : A → B is pure if it is both
almost unperforated and almost divisible, in their suitable versions (Definition 3.2).

Our first examples of pureness arise from the study of ‘Z-stable’-like maps (a
notion that we do not define). Recall from [Kir06, Proposition 4.4] that a unital
separable C∗-algebra A is Z-stable if and only if Z embeds unitally into Aω∩A′ (for
a free ultrafilter ω), which is equivalent to Z embedding unitally to Aω ∩A′∩S′ for
any separable sub-C∗-algebra S ⊆ Aω ∩A′. In particular, the unit in Aω ∩A′ ∩ S′
is almost divisible for each S. In our setting, we get the following:

Theorem 1.1 (cf. 3.8). Let A be σ-unital, and let θ : A→ B be a ∗-homomorphism.
Assume that 1 ∈ Bω ∩ θ(A)′/Ann(θ(A)) is almost divisible. Then, θ is pure.

Further, if 1 ∈ Bω ∩ (θ(A) ∪ S)′/Ann(θ(A) ∪ S) is almost divisible for every
separable sub-C∗-algebra S ⊆ Bω∩θ(A)′, there exists a pure sub-C∗-algebra C ⊆ Bω
such that θ(A) ⊆ C ⊆ Bω.

The second part of Theorem 1.1 says that, up to passing to the ultraproduct,
certain pure ∗-homomorphisms factor through a pure C∗-algebra. In the general
setting, a central question in the study of regularity properties for maps is which ∗-
homomorphisms with a certain property factor, up to Murray-von Neumann equiv-
alence (Lemma 4.4), through a C∗-algebra with said property; see the comments
before Question 3.9 for a more in-depth discussion. Restricted to our case, the
question is:

Question 1.2 (3.9-3.10). Let θ : A → B be a ∗-homomorphism. Is θ pure if and
only if the map ιw ◦ θ : A → Bω factors, up to Murray-von Neumann equivalence,
through a pure C∗-algebra?

More generally, does there exist n ∈ N such that, for any tuple θ1, . . . , θn of
pairwise composable pure ∗-homomorphisms, the composition ιw ◦ θn ◦ · · · ◦ θ1

factors up to Murray-von Neumann equivalence through a pure C∗-algebra?

We start our study defining the notion of pureness and asserting Theorem 1.1
in Section 3, where we also provide a number of examples. In Section 4 we es-
tablish several permanence properties of pureness that are used throughout the
paper. In Section 5, the main section of the paper, we combine all the previous
results to provide an answer to Question 1.2. To do so, we exploit the structure of
(abstract) Cuntz semigroup morphisms that are both almost divisible and almost
unperforated. Our main technical result (Theorem 5.5) says that, at the level of
Cuntz semigroups, any composition of two pure maps factors through a pure object.
Restricted to C∗-algebras, the result reads as follows:
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Theorem 1.3 (cf. 5.7). Let θ1 : A1 → A2 and θ2 : A2 → B be pure *-homo-
morphisms. Then, there exists a Cu-morphism β such that the following diagram
commutes

Cu(A1)
Cu(θ2θ1)

//

−⊗1
''

Cu(B)

Cu(A1)⊗ Cu(Z)

β

77

Theorem 5.7 is in fact more general. For the previous result to hold, one only
needs θ1, θ2 to be cpc. order-zero maps, with θ1 almost divisible and θ2 almost
unperforated; see Definition 3.2 for details. This generality provides us with many
applications where the above statement can be used. Indeed, one obtains a complete
answer to Question 1.2 when A1 is AF and B has stable rank one.

Corollary 1.4 (cf. 5.8). Let A1 be a unital AF-algebra, and let B be a unital
C∗-algebra of stable rank one. Let θ1 : A1 → A2 and θ2 : A2 → B be unital, pure
∗-homomorphisms. Then, θ2θ1 factors, up to approximately unitarily equivalence,
through A1 ⊗Z.

Further, if B has strict comparison, one can set θ2 = idB to answer Question 1.2
for a single ∗-homomorphism in the above situation. We state this in Corollary
5.11.

The last section of the paper, Section 6, is devoted to two types of pure maps:
q-rational ∗-homomorphisms (Definition 6.1) and soft, pure ∗-homomorphisms (see
Definition 6.6). Here, we deduce analogues of Theorem 5.7 for other types of
tensorial absorption. Again, such results are also valid for cpc. order-zero maps, at
the expense of β being only a generalized Cu-morphism.

Theorem 1.5 (cf. 6.3, 6.10). Let θ1 : A1 → A2 and θ2 : A2 → B be q-rational
(resp. soft, pure) ∗-homomorphisms. Then, there exists a Cu-morphism β such
that the following diagram commutes

Cu(A1)
Cu(θ2θ1)

//

−⊗1
&&

Cu(B)

Cu(A1 ⊗D)

β

88

where D is the UHF-algebra Mq (resp. the Jacelon-Razak algebra W).

Combining the results above with Robert’s classification result, we obtain:

Corollary 1.6 (cf. 6.4 ). Let θ1 : A1 → A2 and θ2 : A2 → B be two unital q-rational
∗-homomorphisms. Assume that A1 is stably isomorphic to an inductive limit of
1-dimensional NCCW-complexes with trivial K1-group, and that B is of stable rank
one. Then, θ2θ1 factors, up to approximate unitary equivalence, through A1 ⊗Mq.
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2. Preliminaries

2.1 (The Cuntz semigroup). Given two positive elements a, b in a C∗-algebra A, we
write a - b whenever a is Cuntz subequivalent to b, that is, whenever there exists
(rn)n ⊆ A such that a = limn rnbr

∗
n. Further, we say that a is Cuntz equivalent to

b, and write a ∼ b, whenever a - b and b - a.
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The Cuntz semigroup of A is defined to be the set (A⊗K)+/ ∼, equipped with
the addition induced by diagonal addition and the partial order induced by -. We
denote this monoid by Cu(A); see [CEI08].

As shown in [WZ09], any completely positive, contractive (cpc.), order-zero map
ϕ : A → B (for example, any ∗-homomorphism) induces a well-defined, partially
ordered, monoid morphism Cu(ϕ) : Cu(A)→ Cu(B) given by Cu(ϕ)([a]) = [ϕ(a)].

2.2 (Abstract Cuntz semigroups). As defined in [CEI08], a positively ordered
monoid S is a Cu-semigroup if it satisfies the following four conditions:

(O1) every increasing sequence has a supremum;
(O2) every element is the supremum of a �-increasing sequence;
(O3) x′ + y′ � x+ y whenever x′ � x and y′ � y;
(O4) supn(xn + yn) = supn xn + supn yn for any pair of increasing sequences

(xn), (yn) in S,

where one writes x� y if, for any increasing sequence (zn)n with supremum greater
than or equal to y, there exists n ∈ N such that x ≤ zn.

A monoid morphism S → T between Cu-semigroups is said to be a general-
ized Cu-morphism if it preserves both the order and suprema of increasing se-
quences. A Cu-morphism is any generalized Cu-morphism that also preserves the
�-relation. Any cpc. order-zero map induces a generalized Cu-morphism, while
any ∗-homomorphism induces a Cu-morphism; see [WZ09] and [CEI08] respectively.

The reader is referred to [APT18] for an in-depth introduction to Cu-semigroups.

3. Pure ∗-homomorphisms

We introduce in Definition 3.2 a notion of Cu(Z)-multiplication for Cu-mor-
phisms, and we say that a ∗-homomorphism is pure if its induced Cu-morphism
has Cu(Z)-multiplication. We then provide a number of examples (3.3-3.5), and
show that ‘Z-stable like’ morphisms are always pure. In fact, their composition
with the embedding to the codomain ultraproduct always factorizes through a pure
C∗-algebra; see Theorem 3.8.

The section ends with Question 3.9 and its weakening Question 3.10. A satis-
factory general answer to the second question is given in Section 5.

3.1. Recall from [Win12, Definition 2.1] (see [RT17] for the concrete definition
displayed here) that a Cu-semigroup S is said to be

• almost unperforated if, whenever x, y ∈ S are such that (m+ 1)x ≤ my for
some m ∈ N, one has x ≤ y.

• almost divisible if for every k ∈ N and x′, x ∈ S such that x′ � x there
exists z ∈ S such that kz ≤ x and x′ ≤ (k + 1)z.

One says that a C∗-algebra is pure if its Cuntz semigroup is almost unperforated
and almost divisible.

In [APT18], a theory of tensor products and multiplication for Cuntz semi-
groups was developed. Amongst other results, the authors showed in [APT18,
Theorem 7.3.11] that a Cu-semigroup S is pure if and only if S ∼= S ⊗ Cu(Z).
Further, one can see that the Cuntz semigroup of any Z-stable C∗-algebra has
Cu(Z)-multiplication (ie. it tensorially absorbs Cu(Z)).

Definition 3.2. Let ϕ : S → T be a generalized Cu-morphism. We will say that ϕ
is

(i) almost unperforated if ϕ(x) ≤ ϕ(y) whenever (m + 1)x ≤ my for some
m ∈ N.

(ii) almost divisible if for every k ∈ N and x′, x ∈ S such that x′ � x there
exists z ∈ T such that kz ≤ ϕ(x) and ϕ(x′) ≤ (k + 1)z.
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The generalized Cu-morphism ϕ will be said to have Cu(Z)-multiplication if it
is almost unperforated and almost divisible, and a cpc. order-zero map θ : A→ B
will be called pure if Cu(θ) has Cu(Z)-multiplication.

Let us begin the section with some examples of pure maps:

Example 3.3. It is readily checked that any ∗-homomorphism A→ B is pure when-
ever A or B is pure. More generally, the same holds if Cu(A→ B) factors through
the Cuntz semigroup of a pure C∗-algebra; see Proposition 4.2 for details and more
general statements.

As a concrete example, any ∗-homomorphism that factors through an infinite
reduced free product ∗∞i=1(A, τ), with τ a trace, is pure. These products are always
simple and monotracial ([Avi82, Proposition 3.1]), have stable rank one ([DHR97,
Theorem 3.8]), and strict comparison ([Rob12, Proposition 6.3.2]). A standard
argument, using the positive solution to the ranks problem for simple, stable rank
one C∗-algebras from [Thi20], proves that the Cuntz semigroup is almost divisible;
see, for example, [Vil23, Remark 4.4] or its generalization Proposition 3.5 below.

Example 3.4. Let A,B be C∗-algebras, and assume that B is almost divisible. Then,
it follows from [RR13, Lemma 6.1(i)] that the first factor embedding A → A ⊗ B
is almost unperforated and, therefore, pure.

Another example of pure maps is given by the following proposition. Recall that
a C∗-algebra A is said to be nowhere scattered if it has no nonzero elementary
ideal-quotients; see [TV24a].

Proposition 3.5. Let A be a nowhere scattered C∗-algebra of stable rank one, and
let θ : A→ B be a cpc. order-zero, almost unperforated map. Then, θ is pure.

Proof. We need to show that Cu(θ) is almost divisible. To see this, let x ∈ Cu(A)
and take k ∈ N. Then, it follows from [APRT22, Theorem 7.14] that there exists
y ∈ Cu(A) such that ŷ = 2

2k+1 x̂ in L(F (Cu(A))); see [APRT22, Section 7] for the
appropiate definitions.

Thus, we have

∞x =∞y, λ(ky) < λ(x), and λ(x) < λ((k + 1)y)

for every normalized functional λ ∈ F (Cu(A)).
By [OPR12, Proposition 2.1], there exists n ∈ N such that

(n+ 1)(ky) ≤ nx, and (n+ 1)x ≤ n(k + 1)y.

Using that Cu(θ) is almost unperforated, we obtain kCu(θ)(y) ≤ Cu(θ)(x) ≤
(k + 1) Cu(θ)(y), as desired. �

Recall that a separable unital C∗-algebra is Z-stable if and only if Z embeds
unitally into Aω ∩ A′; see, for example, [Kir06, Proposition 4.4]. A reindexing
argument shows that this is equivalent to Z embedding unitally to Aω ∩ A′ ∩ C ′
for any separable sub-C∗-algebra C ⊆ Aω ∩A′. In particular, any such C∗-algebra
satisfies that the unit 1 ∈ Aω ∩A′ ∩ C ′ is almost divisible.

In what follows (Theorem 3.8), we show that any ‘Z-stable-like’ ∗-homomorphism
is pure. For that, recall that given a ∗-homomorphism θ : A → B, the annihilator
of θ, in symbols Ann(θ), is defined as the set of elements x in B such that xθ(A) =
θ(A)x = {0}.
Proposition 3.6. Let θ : A→ B be a ∗-homomorphism. Assume that there exists
a net of contractive, positive elements (eλ)λ∈Λ in θ(A)′∩B such that (eλ)λ is an ap-
proximate unit for θ(A) and such that eλ is almost divisible in θ(A)′∩B/Ann(θ(A))
for each λ. Then, there exists a sub-C∗-algebra C ⊆ θ(A)′ ∩ B such that the map
A→ C∗(θ(A), C) is pure. If Λ = N, C can be taken to be separable.
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Proof. For each triple µ = (λ, k, p) ∈ Λ×N×Q+,≤1, let fµ ∈ (θ(A)′ ∩B)+ be such
that

f⊕kµ - eλ, and (eλ − p)+ - f
⊕(k+1)
µ

in Cu(θ(A)′∩B/Ann(θ(A))), where the superscript ⊕k denotes the diagonal formed
by k copies of the element.

Thus, up to a cut-down of fµ, there exists a finite matrix hµ with entries in
Ann(θ(A))) such that

f⊕kµ ⊕ 0 - eλ ⊕ hµ, and (eλ − p)+ ⊕ 0 - f⊕(k+1)
µ ⊕ hµ

in (θ(A)′ ∩ B) ⊗Ml for some l, where the 0’s denote zero matrices of appropiate
sizes.

Now, for any q ∈ Q+,≤1, it follows from [Rør92, Proposition 2.4] that there exist
finite matrices rµ,q and sµ,q over θ(A)′ ∩B such that

(1) (f⊕kµ − q)+ ⊕ 0 = rµ,q(eλ ⊕ hµ)r∗µ,q

and

(2) (eλ − p− q)+ ⊕ 0 = sµ,q(f
⊕(k+1)
µ ⊕ hµ)s∗µ,q.

Set C = C∗({eλ, fµ, rµ,q(i, j), sµ,q(i, j)}µ,q,i,j). If Λ = N, then C is separable by
construction.

Let us show that A → C∗(θ(A), C) is pure. For any m ∈ N and C∗-algebra E,
let ιm : E → Mm(E) denote the map e 7→ e⊕m. We will also use this notation for
the matrix amplification Mk(E) → Mkm(E) defined entry-wise. Note that, for a
matrix e ∈Mn(E), e⊕m denotes the mn×mn matrix e⊕ . . .⊕ e, while ιm(e) is the
mn×mn where each entry of e has been replaced by a diagonal m×m matrix. An
important fact that we will use is: Given a ∈Mn(A) and b ∈Mm(θ(A)′ ∩B), then
ιn(b) commutes with θ(a)⊕m (and the roles of a and b can be reversed).

First, given a contraction a ∈ Mn(A)+, note that applying ιn to Equation (1)
and multiplying by an l = l(µ, q) diagonal matrix of θ(a)’s, one gets

(θ(a)(fµ − q)⊕n+ )⊕k ⊕ 0 = θ(a)⊕lιn((f⊕kµ − q)+ ⊕ 0)

= θ(a)⊕lιn(rµ,q)ιn(eλ ⊕ hµ)ιn(rµ,q)
∗

= ιn(rµ,q)θ(a)⊕lιn(eλ ⊕ hµ)ιn(rµ,q)
∗

= ιn(rµ,q)(θ(a)ιn(eλ)⊕ 0)ιn(rµ,q)
∗

- θ(a)ιn(eλ)

and, by multiplying an m = m(µ, q) diagonal matrix of a’s to an enlarged Equa-
tion (2), we obtain

θ(a)(eλ − p− q)⊕n+ ⊕ 0 = θ(a)⊕mιn(sµ,q)ιn(f⊕(k+1)
µ ⊕ hµ)ιn(sµ,q)

∗

= ιn(sµ,q)((θ(a)ιnf
⊕(k+1)
µ ⊕ 0)ιn(sµ,q)

∗

= ιn(sµ,q)((θ(a)f⊕nµ )⊕(k+1) ⊕ 0)ιn(sµ,q)
∗

- (θ(a)f⊕nµ )⊕(k+1).

Thus,

((θ(a)f⊕nµ −q)+)⊕k - θ(a)e⊕nλ - θ(a), and (θ(a)(e⊕nλ −p−q)+) - (θ(a)f⊕nµ )⊕(k+1)

in C∗(θ(A), C)⊗K.
Since this holds for any choice of p and q, taking suprema gives (θ(a)f⊕nµ )⊕k -

θ(a) and (θ(a)e⊕nλ ) - (θ(a)f⊕nµ )⊕(k+1). Further, since the e⊕nλ ’s are an approximate
unit for θ(a), it follows that a is almost divisible in C∗(θ(A), C)⊗K. Since this holds
for any finite matrix over θ(A), we get that A→ C∗(θ(A), C) is almost divisible.
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To show that A → C∗(θ(A), C) is almost unperforated, we follow the same
strategy as in [Rør04, Lemma 4.3]. Thus, let a, b ∈ Mn(A)+ be contractions such
that a⊕(k+1) - b⊕k in A ⊗ K for some k ∈ N. For any ε > 0, there exists a

finite matrix v with entries in A such that (a − ε)⊕(k+1)
+ = v(b⊕k ⊕ 0)v∗. Given

µ = (λ, k, p), we have

(f⊕nµ θ((a− ε)+))⊕(k+1) = θ(v)((f⊕nµ θ(b))⊕k ⊕ 0)θ(v)∗.

In particular, (f⊕nµ θ((a − ε)+))⊕(k+1) - (f⊕nµ θ(b))⊕k in Cu(C∗(C,A)). Recall
from the above computations that we have

(θ((a− ε)+)e⊕nλ ) - (θ((a− ε)+)f⊕nµ )⊕(k+1), and (θ(b)f⊕nµ )⊕k - θ(b).

Chaining these three --relations together, one obtains

(θ((a− ε)+)e⊕nλ ) - (θ((a− ε)+)f⊕nµ )⊕(k+1) - (f⊕nµ θ(b))⊕k - θ(b).

Using once again that the e⊕nλ ’s are an approximate unit for θ((a− ε)+), we get
(θ(a)− 2ε)+ - θ(b). This proves that A→ C∗(θ(A), C) is almost unperforated, as
required. �

Lemma 3.7 below shows that, when studying pureness of maps, one can restrict
to those with an ultraproduct for a codomain.

Lemma 3.7. Let θ : A→ B be a cpc. order-zero map, and let ιω : B → Bω be the
natural inclusion. Then, θ is pure if and only if ιωθ is pure.

Proof. If θ is pure, the composition ιωθ is pure; see Proposition 4.2 for details.
Conversely, assume that ιωθ is pure. We need to show that Cu(θ) is both almost

divisible and almost unperforated. First, let n ∈ N, [a] ∈ Cu(A) and ε > 0. Since
any element in Cu(A) can be written as the supremum of classes in M∞(A)+ (and
since Cu(θ) preserves suprema), we may assume a ∈ Mk(A)+ for some k ∈ N.
Using that ιωθ is pure, we find [b] ∈ Cu(Bω) such that [ιωθ((a−ε/3)+)] ≤ (n+1)[b]
and n[b] ≤ [ιωθ(a)]. Upon cutting-down a and b if needed (say, to (a− ε/2)+), we
may assume b ∈ Bω⊗Mk and that there exist finite matrices r, s over Bω such that
ιωθ((a− ε/2)+) = rb⊕(n+1)r∗ and b⊕n = sιωθ(a)s∗.

Further, note that Bω ⊗Mk
∼= (B⊗Mk)ω. Thus, by going sufficiently far in the

sequences corresponding to b and the entries of r and s, we can find elements b0 ∈
Mk(B) and r0, s0 ∈M∞(B) such that [θ((a− ε)+)] ≤ (n+ 1)[b0] and n[b0] ≤ [θ(a)].
This shows that Cu(θ) is almost divisible.

The proof of almost unperforation is analoguous. �

Theorem 3.8. Let A be σ-unital, and let θ : A→ B be a ∗-homomorphism. Assume
that 1 ∈ Bω ∩ θ(A)′/Ann(θ(A)) is almost divisible. Then, θ is pure.

Further, if 1 ∈ Bω ∩ (θ(A) ∪ S)′/Ann(θ(A) ∪ S) is almost divisible for every
separable sub-C∗-algebra S ⊆ Bω∩θ(A)′, there exists a pure sub-C∗-algebra C ⊆ Bω
such that θ(A) ⊆ C ⊆ Bω.

Proof. As shown in Lemma 3.7 above, a ∗-homomorphism A → B is pure if and
only if the induced map A→ Bω is pure. Further, since 1 ∈ Bω ∩ θ(A)′/Ann(θ(A))
is almost divisible, it follows from Proposition 3.6 above that A→ Bω is pure. This
gives the first part of the statement.

For the second part, note that it follows from Proposition 3.6 that there exists a
separable sub-C∗-algebra C1 ⊆ Bω ∩θ(A)′ such that inclusion θ(A) ⊆ C∗(θ(A), C1)
is pure. Since C1 is separable, we know by our assumption that 1 ∈ Bω ∩ (θ(A) ∪
C1)′/Ann(θ(A) ∪ C1) is almost divisible. Proposition 3.6 proves the existence of a
separable C2 ⊆ Bω ∩ θ(A)′ ∩C ′1 such that C∗(θ(A), C1) ⊆ C∗(θ(A), C1, C2) is pure.

Proceeding inductively, one obtains a sequence of pure inclusions in Bω. Their
limit, denoted by C, is pure. �
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The previous result justifies the following question:

Question 3.9. Let θ : A → B be a ∗-homomorphism. Is θ pure if and only if the
composition ιwθ : A → Bω factors, up to Murray-von Neumann equivalence (see
Lemma 4.4), through a pure C∗-algebra?

Question 3.9 is a particular instance of a general question that one can ask for any
property P . Namely, does any ∗-homomorphism with P ‘come’ from a C∗-algebra
with P? In other words, does P admit a McDuff type characterization?

This question has been posed for: real rank zero inclusions [GN23], where it
remains open; for O2-stable morphisms, answered in [Gab20, Corollary 4.5]; and
for morphisms of nuclear dimension 0, with a partial answer provided in [CN24].

For any of the properties P listed above, one has that an inductive system where
each map satisfies P has a limit with P . Loosely, one can interpret this as saying
that any infinite composition of maps with P always factorizes through a C∗-algebra
with P . In this sense, one may also ask if there exists a natural number nP such that
the composition of nP morphisms with P always factorizes through a C∗-algebra
with P . Specialized to our setting, the question is:

Question 3.10. Does there exist n ∈ N such that, for any tuple θ1, . . . , θn of pair-
wise composable pure ∗-homomorphisms, the composition ιwθn · · · θ1 factors up to
Murray-von Neumann equivalence through a pure C∗-algebra?

To our knowledge, an answer to Question 3.10 is not known for real rank zero
inclusions. In what follows, we investigate the question for our notion of pureness.

4. Pureness and Cu(Z)-multiplication

This section compiles permanence properties of Cu(Z)-multiplication for gene-
ralized Cu-morphisms. We state some of these results in the language of abstract
Cuntz semigroups to highlight when the �-relation needs to be preserved.

Propositions 4.1 and 4.2 below are in analogy to Proposition 3.19 and Lemma 3.20
from [Gab20].

Proposition 4.1. Let S be a Cu-semigroup. Then S ∼= S ⊗ Cu(Z) if and only if
idS has Cu(Z)-multiplication.

Proof. It follows from Theorems 7.3.11 and 7.5.4 in [APT18] that S ∼= S ⊗ Cu(Z)
if and only if S is almost divisible and almost unperforated. The statement now
follows from the defintions. �

Proposition 4.2. Let ϕ1 : S1 → S2 and ϕ2 : S2 → T be generalized Cu-morphisms.
Then,

(1) if ϕ1 has Cu(Z)-multiplication, so has ϕ2ϕ1.
(2) if ϕ1 is a Cu-morphism and ϕ2 has Cu(Z)-multiplication, the composition

ϕ2ϕ1 also has Cu(Z)-multiplication.
(3) if S2 has Cu(Z)-multiplication, so have both ϕ2 and ϕ1.

Proof. (1) Given x′ � x in S1 and k ∈ N, there exists z ∈ S2 such that ϕ1(x′) ≤ (k+
1)z and kz ≤ ϕ1(x). Thus, one has ϕ2ϕ1(x′) ≤ (k+1)ϕ2(z) and kϕ2(z) ≤ ϕ2ϕ1(x).

Similarly, if (m+ 1)x ≤ my for some m ∈ N in S1, one gets ϕ1(x) ≤ ϕ1(y) and,
consequently, ϕ2ϕ1(x) ≤ ϕ2ϕ1(y).

(2) If ϕ1 is now a Cu-morphism and ϕ2 is the map that has Cu(Z)-multiplication,
one can take x′ � x in S1 and consider the induced relation ϕ1(x′)� ϕ1(x) in S2.
Since ϕ2 has Cu(Z)-multiplication, one obtains the element needed for the almost
division in T .

The same argument shows that if (m+ 1)x ≤ my in S, then ϕ2ϕ1(x) ≤ ϕ2ϕ1(y)
in T , as desired.
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(3) If S2 has Cu(Z)-multiplication, [APT18, Proposition 7.3.8] implies that for
any element x ∈ S2 and k ∈ N, there exists y ∈ S2 such that ky ≤ x ≤ (k + 1)y.
With this stronger property, it is routine to check that both ϕ1 and ϕ2 have Cu(Z)-
multiplication. �

The following lemma follows directly from standard model theoretic techniques
applied to Cu-semigroups; see, for example, [TV21, Section 5].

Lemma 4.3. Let ϕ : S → T be a generalized Cu-morphism. Then ϕ has Cu(Z)-
multiplication if and only if ϕιH has Cu(Z)-multiplication for every inclusion ιH
from a countably based sub-Cu-semigroup H to S.

Recall from [Gab20, Definition 3.4] that a pair of ∗-homomorphisms θ, η : A→ B
are approximately Murray-von Neumann equivalent if, for any finite subset F of A
and any ε > 0, there exists u ∈ B such that

‖uθ(a)u∗ − η(a)‖ < ε, and ‖uη(a)u∗ − θ(a)‖ < ε,

for every a ∈ F .
The following is essentially [Gab20, Corollary 3.11] applied to the category Cu,

with the only difference that we drop the assumption of A being separable.

Lemma 4.4. Let θ, η : A→ B be two approximately Murray-von Neumann equiv-
alent ∗-homomorphisms. Then, Cu(θ) = Cu(η).

Proof. Let x ∈ Cu(A). By [TV21, Proposition 6.1], there exists a separable sub-
C∗-algebra A′ ⊆ A such that Cu(ιA′)(Cu(A′)) is a sub-Cu-semigroup of Cu(A)
containing x. Here, ιA′ denotes the inclusion from A′ to A.

Since the functor Cu(·) is M2-stable and invariant under approximate unitary
equivalence, [Gab20, Corollary 3.11] implies that

Cu(θ)(x) = Cu(θιA′)(x) = Cu(ηιA′)(x) = Cu(η)(x),

as required. �

The following result gives one of the implications of Question 3.9.

Proposition 4.5. Let θ : A → B be a ∗-homomorphism. Assume that, for any
separable sub-C∗-algebra A′ ⊆ A, there exist cpc. order-zero maps η : A′ → C
and ρ : C → B such that C is pure and ρη is approximately Murray-von Neumann
equivalent to θιA′ .

Then, θ is pure.

Proof. Assume first that A is separable. Then, θ is Murray-von Neumann equivalent
to a map that factorizes through C. Thus, by Lemma 4.4, Cu(θ) itself factorizes
through Cu(C), and so θ is pure by Proposition 4.2.

If A is not separable, we know from [TV21, Proposition 6.1] that any countably
based sub-Cu-semigroup H in Cu(A) is contained in Cu(A′) for some separable
sub-C∗-algebra A′ of A. Thus, the argument above shows that Cu(θιA′) has Cu(Z)-
multiplication.

Consequently, since any inclusion gives rise to a Cu-morphism, Proposition 4.2
shows that Cu(ϕ)ιH has Cu(Z)-multiplication. Lemma 4.3 gives the required result.

�

4.6 (Approximations of ∗-homomorphisms). Recall that a C∗-algebra A is said
to be approximated by a family of sub-C∗-algebras (Aλ)λ∈Λ if, for each ε > 0
and every choice of finitely many elements a1, . . . , an ∈ A, there exist λ ∈ Λ and
b1, . . . , bn ∈ Aλ such that ‖bj − aj‖ < ε for each j.
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Let θ : A→ B be a cpc. order-zero map. We will say that a tuple (Aλ, θλ : Aλ →
B)λ∈Λ approximates θ if each θλ is cpc. order-zero and the following condition
holds:

For every ε > 0 and every finitely tuple a1, . . . , an ∈ A, there exist λ ∈ Λ and
b1, . . . , bn ∈ Aλ such that

‖bj − aj‖ < ε, and ‖θλ(bj)− θ(aj)‖ < ε

for each j.
Note that this notion of approximation naturally includes the notion of limit

morphism (ie. when Aλ = A for each λ).

We will now show that pureness is preserved under approximations. We do this
by proving a much more general result, which we expect to find other uses elsewhere.
Informally, Proposition 4.7 below says that any formula of the Cuntz semigroup is
inherited by the approximated map. This generalizes [TV21, Proposition 3.7].

Proposition 4.7. Let θ : A → B be a cpc. order-zero map, and let (Aλ, θλ)λ∈Λ

approximate θ. Then, for any finite sets J,K, any family of pairs [a′j ], [aj ] ∈ Cu(A)
such that [a′j ]� [aj ] for each j ∈ J , and any functions mk, nk : J → N such that∑

j∈J
mk(j)[aj ]�

∑
j∈J

nk(j)[a′j ]

for all k ∈ K, there exists λ ∈ Λ, and cj ∈ (Aλ ⊗ K)λ for each j, such that
[θ(a′j)]� [θλ(cj)]� [θ(aj)], and [a′j ]� [cj ]� [aj ] in Cu(A), and∑

j∈J
mk(j)[cj ]�

∑
j∈J

nk(j)[cj ]

in Cu(Aλ).

Proof. Let ε > 0 be such that [a′j ] ≤ [(aj − 2ε)+] for each j. Note that, by
definition, the Aλ’s approximate A. Thus, it follows from (the proof of) [TV21,
Proposition 3.7] that, for every sufficiently small positive σ > 0 with σ < ε, one
can find λ ∈ Λ and bj ∈ (Aλ ⊗ K)λ such that [a′j ] � [(bj − ε)+] � [aj ] in Cu(A)
and ∑

j∈J
mk(j)[(bj − ε)+]�

∑
j∈J

nk(j)[(bj − ε)+]

in Cu(Aλ) for every k and, additionally, such that ‖θλ(bj)− θ(aj)‖ ≤ σ for every j.
Set cj := (bj − ε)+. Then, since σ < ε, it follows that θ((aj − 2ε)+) - θλ(cj) -

θ(aj). Using that θ is cpc. order zero, we see that θ(a′j) - θ((aj − 2ε)+) and,
consequently, θ(a′j) - θλ(cj). �

Corollary 4.8. Let θ : A → B be a cpc. order-zero map, and let (Aλ, θλ)λ∈Λ

approximate θ. Assume that θλ is pure for each λ. Then, θ is pure.

Proof. First, let n ∈ N. Given [a] ∈ Cu(A) and ε > 0, use Proposition 4.7 (with
K = ∅) to find λ ∈ Λ and c ∈ (Aλ⊗K)+ such that [θ((a− ε)+)]� [θλ(c)]� [θ(a)]
and [(a − ε)+] � [c] � [a]. Take δ > 0 such that [θ((a − ε)+)] ≤ [θλ((c − δ)+)].
Then, since θλ is pure, there exists [d] ∈ Cu(B) such that n[d] ≤ [θλ(c)] and
[θλ((c− δ)+)] ≤ (n+ 1)[d] in Cu(B). This implies

n[d] ≤ [θλ(c)] ≤ [θ(a)], and [θ((a− ε)+)] ≤ [θλ((c− δ)+)] ≤ (n+ 1)[d],

which shows that θ is almost divisible.
Now assume that [a1], [a2] ∈ Cu(A) are such that (m+ 1)[a1] ≤ m[a2] for some

m ∈ N. Take any pair of elements a′1, a
′′
1 such that [a′1] � [a′′1 ] � [a1], and find

a′2 such that [a′2] � [a2] and (m + 1)[a′′1 ] � m[a′2]. Apply Proposition 4.7 for the
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pairs a′1, a
′′
1 and a′2, a2 and the formula (m + 1)[a′′1 ] � m[a′2] to find λ ∈ Λ and

c1, c2 ∈ (Aλ ⊗K)+ such that

[θ(a′1)]� [θλ(c1)]� [θ(a′′1)], [θ(a′2)]� [θλ(c2)]� [θ(a2)]

in Cu(A) and (m+ 1)[c1]� m[c2] in Cu(Aλ).
Thus, since Cu(θλ) is almost unperforated, [θλ(c1)] ≤ [θλ(c2)]. This shows that

[θ(a′1)] ≤ [θ(a2)] and, since the choice of a′1 was arbitrary, we obtain [θ(a1)] ≤
[θ(a2)]. �

5. Factorizing compositions of pure ∗-homomorphisms

The aim of this section is to provide a partial answer to Question 3.10. Namely,
we show that —at a Cuntz semigroup level— the composition of any two pure
∗-homomorphisms (in fact, two cpc. order-zero maps) factors through a pure Cu-
semigroup; see Theorem 5.7. In order to prove such a result, we start with a
study of pureness in the category Cu, which we use to prove the technical result
Theorem 5.5.

Recall that the Cuntz semigroup of the Jiang-Su algebra Z is isomorphic to
Z = N ∪ (0,∞](see eg. [APT18]). Throughout this subsection, we will write Z as
the union Z = Zc ∪ Zsoft, where Zc = N and Zsoft = [0,∞] with Zc ∩ Zsoft = {0}.
Denote by σ : Z → [0,∞] the soft retraction, that is, the map that sends each
compact element n ∈ Zc to its soft counterpart n ∈ Zsoft = [0,∞] and leaves the
soft part invariant.

Lemma 5.1. Let S be a Cu-semigroup, and let γ : Z → S be a map such that γ|Zc

is an order-preserving monoid morphism. Then, γ is a generalized Cu-morphism if
and only if the following two conditions are satisfied:

(i) γ(σ(1)) ≤ γ(1) ≤ γ(1 + ε) for every ε > 0; and
(ii) γ|Zsoft

is a generalized Cu-morphism.

Proof. The forward implication is trivial. For the reverse implication, assume that
γ|Zsoft

is a generalized Cu-morphism and that γ(σ(1)) ≤ γ(1) ≤ γ(1 + ε) for each
ε > 0. Note, in particular, that we have γ(σ(n)) ≤ γ(n) ≤ γ(n+ε) for each n ∈ Zc.
To show that γ is order-preserving, take n ∈ Zc and t ∈ Zsoft such that t ≤ n.
Then, one has t ≤ σ(n) and, consequently, γ(t) ≤ γ(σ(n)) ≤ γ(n). Conversely, if
n ≤ t, we know that σ(n) < t in Zsoft. Let ε > 0 be such that σ(n) + ε < t. Then,

γ(n) ≤ γ(n+ ε) = γ(σ(n) + ε) ≤ γ(t).

To show that it preserves suprema, note that any increasing sequence in Z has a
cofinal subsequence either in Zc or Zsoft. Thus, we may assume that we are in one
of these two cases. If the increasing sequence (td)d is in Zsoft = (0,∞], γ preserves
its supremum by assumption. Else, if (td)d is in Zc, it either stabilizes (in which
case γ trivially preserves its supremum) or it tends to ∞ ∈ Zsoft. In this situation,
one can take the sequence (σ(td))d induced by the soft elements corresponding to
our compact sequence. These two sequences share ∞ as their supremum. One has

γ(σ(td)) ≤ γ(td) ≤ sup
d
γ(td), and γ(td) ≤ γ

(
td +

1

d

)
for every d ≥ 2. This implies γ(∞) = supd γ(σ(td)) ≤ supd γ(td) and supd γ(td) ≤
supd γ(td + 1

d ) = γ(∞). This shows supd γ(td) = γ(∞), as desired.
Finally, to see that the map is additive, take n ∈ Zc and t ∈ Zsoft. Then,

γ(n+ t) = γ(σ(n) + t) = γ(σ(n)) + γ(t) ≤ γ(n) + γ(t).
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Conversely, if t 6= 0, let ε > 0 such that t−ε > 0. Then, n+t = (σ(n)+ε)+(t−ε).
This implies

γ(n) + γ(t− ε) ≤ γ(σ(n) + ε) + γ(t− ε) = γ(n+ t)

and, letting ε tend to 0, we obtain γ(n) + γ(t) ≤ γ(n+ t), as required. �

Let S be a Cu-semigroup. The following notation is inspired by [APT18, Theo-
rem 6.3.3]: For any pair x′ ≤ x and any k, n ∈ N, set

µ((k, n), x′, x) := {y ∈ S | ny ≤ kx, and kx′ ≤ (n+ 1)y}.
Note that this set is not empty whenever x′ � x and x is almost divisible. Further,
one has that

µ((k, n), x′′, x) ⊆ µ((k, n), x′, x) ⊆ µ((k, n), 0, x)

whenever x′ ≤ x′′ ≤ x, and that µ((k, n), 0, x) = {y ∈ S | ny ≤ kx}.
What follows is a generalization of [APT18, Theorem 6.3.3] to our setting. In

our case, the proof becomes more technical (for example, we cannot use unicity
arguments) and so we proceed with additional care. As another difference between
the methods, we will need to use the extension result (Lemma 5.1) proved above.

Lemma 5.2. Let ϕ : S → T be an almost unperforated generalized Cu-morphism.
Let x1, x2 ∈ S and k1, k2, n1, n2 ∈ N such that k1/n1 < k2/(n2 + 1). Assume that
x1 ≤ x2. Then,

(1) ϕ(y1) ≤ ϕ(y2) for every y1 ∈ µ((k1, n1), 0, x1) and y2 ∈ µ((k2, n2), x1, x2).
(2) If ϕ is a Cu-morphism, then ϕ(y1)� ϕ(y2) whenever y1 ∈ µ((k1, n1), 0, x1),

y2 ∈ µ((k2, n2), x′2, x2) and x1 � x′2 � x2.

Proof. One has n1y1 ≤ k1x1 and k2x1 ≤ (n2 + 1)y2. In particular,

n1k2y1 ≤ k1k2x1 ≤ (n2 + 1)k1y2.

It follows from definition that ϕ(y1) ≤ ϕ(y2), which shows (1).
For (2), simply note that one gets

n1k2y1 ≤ k1k2x1 � k1k2x
′
2 ≤ (n2 + 1)k1y2.

Thus, we can find y′2 such that y′2 � y2 and n1k2y1 ≤ (n2 + 1)k1y
′
2. This implies

ϕ(y1) ≤ ϕ(y′2)� ϕ(y2), as required. �

Lemma 5.3. Let ϕ1 : S1 → S2 and ϕ2 : S2 → T be generalized Cu-morphisms.
Assume that ϕ1 is almost divisible, and that ϕ2 is almost unperforated. Then, for
any x ∈ S1 and t ∈ (0,∞], the set

Φ(t, ϕ1(x)) :=

{
ϕ2(y) | y ∈ µ((k, n), 0, ϕ1(x)) for some k, n ∈ N such that

k

n
< t

}
has a supremum, bounded by dteϕ2ϕ1(x) (here, d∞e :=∞.)

Proof. For every d ∈ N, take kd, nd ∈ N and xd ∈ S1 such that

kd
nd

<
kd+1

nd+1 + 1
, sup

d

(
kd
nd

)
= t, xd � xd+1, and sup

d
xd = x.

Set x0 = 0. For each d, take yd ∈ µ((kd, nd), ϕ1(xd−1), ϕ1(xd)), which exists by
almost divisibility of ϕ1. By Lemma 5.2 (1), we see that the sequence (ϕ2(yd))d is
increasing in T . Consider z = supd ϕ2(yd). We will prove that z is the supremum
of Φ(t, ϕ1(x)).

Take y ∈ µ((k, n), 0, ϕ1(x)) for some k, n ∈ N such that k/n < t. Take y′ ∈ S2

such that y′ � y, and find d ∈ N such that

k

n
<

kd+1

nd+1 + 1
, and y′ ∈ µ((k, n), 0, ϕ1(xd)).
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Since yd+1 ∈ µ((kd+1, nd+1), ϕ1(xd), ϕ1(xd+1)), it follows from Lemma 5.2 (1)
that ϕ2(y′) ≤ ϕ2(yd+1) ≤ z. As this holds for every y′�-below y, we get ϕ2(y) ≤ z.
This shows that z is the supremum of Φ(t, ϕ1(x)), as desired.

To see that z is bounded by dteϕ2ϕ1(x), simply note that for any pair k, n such
that k/n < t we have k + 1 ≤ dten. Thus, one gets (k + 1)y ≤ dteny ≤ k(dtex).
Consequently, we obtain ϕ2(y) ≤ dteϕ2ϕ1(x), as desired. �

Proposition 5.4. Let ϕ1 : S1 → S2 and ϕ2 : S2 → T be generalized Cu-morphisms.
Assume that ϕ1 is almost divisible, and that ϕ2 is almost unperforated. Then,
for any x ∈ S1, there exists a generalized Cu-morphism αx : Z → T such that
αx(1) = ϕ2ϕ1(x).

Proof. For every n ∈ Zc, set αx(n) := nϕ2ϕ1(x). For each t ∈ Zsoft, define

αx(t) := sup Φ(t, ϕ1(x)),

which exists by Lemma 5.3.
Note that, for any s ≥ t in Zsoft, one has Φ(t, ϕ1(x)) ⊆ Φ(s, ϕ1(x)). This implies

αx(t) ≤ αx(s). Further, it follows from Lemma 5.3 that αx(σ(1)) ≤ ϕ2ϕ1(1) =
αx(1). Additionally, for any ε > 0, take any x′ ∈ S1 such that x′ � x and let
n ∈ N be such that 1 < (n+ 2)/n < 1 + ε. Using almost divisibility, there exists y
in µ(((n + 2), n), ϕ1(x′), ϕ1(x)). One has (n + 2)ϕ1(x′) ≤ (n + 1)y. Using almost
unperforation, ϕ2ϕ1(x′) ≤ ϕ2(y) ≤ αx(1 + ε) and, by taking suprema on x′, we
deduce αx(1) = ϕ2ϕ1(x) ≤ αx(1 + ε).

The arguments above show that αx(σ(1)) ≤ αx(1) ≤ αx(1 + ε) for every ε > 0.
Further, note that αx|Zc is trivially an order-preserving monoid morphism. We
will now prove that αx|Zsoft

is a generalized Cu-morphism. Lemma 5.1 will then
imply that αx is a generalized Cu-morphism. We have already shown that αx|Zsoft

is order-preserving, so it suffices to prove that the map preserves suprema and
addition.

To show that it preserves suprema, note that any increasing sequence (td)d in
Zsoft satisfies ∪dΦ(td, ϕ1(x)) = Φ(supd td, ϕ1(x)). This proves that αx preserves
suprema in Zsoft.

To see that the map is additive, let t1, t2 ∈ Zsoft = [0,∞]. First, for each i = 1, 2,
let yi ∈ µ((ki, ni), 0, ϕ1(x)) for some ki, ni ∈ N such that

ki
ni

< ti.

Take y′i ∈ S2 such that y′i � yi for i = 1, 2, and let x0 ∈ S1 be such that

x0 � x, and y′i ∈ µ((ki, ni), 0, ϕ1(x0)).

Choose k, n ∈ N such that

k1

n1
+
k2

n2
=
k1n2 + k2n1

n1n2
<

k

n+ 1
, and

k

n
< t1 + t2.

Using that ϕ1 is almost divisible, find y ∈ µ((k, n), ϕ1(x0), ϕ1(x)). Note that
y′1+y′2 ∈ µ((k1n2+k2n1, n1n2), 0, ϕ1(x0)). By Lemma 5.2 (1), one gets ϕ2(y′1+y′2) ≤
ϕ2(y). Thus, we get

ϕ2(y′1) + ϕ2(y′2) ≤ ϕ2(y) ≤ αx(t1 + t2)

and, since this holds for every choice of y′1, y
′
2, one obtains ϕ2(y1) + ϕ2(y2) ≤

αx(t1 + t2). Taking suprema now on y1, y2, we have αx(t1) + αx(t2) ≤ αx(t1 + t2).
Conversely, take y ∈ µ((k, n), 0, ϕ1(x)) for k, n with k/n < t1 + t2 and x′ � x.

Find ki, ti ∈ N such that ki
ni
< ti and

k

n
<

k1

n1 + 1
+

k2

n2 + 1
=
k1(n2 + 1) + k2(n1 + 1)

(n1 + 1)(n2 + 1)
.
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Proceeding as before, take y′ � y and find x′ such that x′ � x and y′ ∈
µ((k, n), 0, ϕ1(x′)). Find yi ∈ µ((ki, ni), ϕ1(x′), ϕ1(x)). In particular, we have

(k1(n2 + 1) + k2(n1 + 1))ny′ ≤ (k1(n2 + 1) + k2(n1 + 1))kϕ1(x′)

≤ (n1 + 1)(n2 + 1)k(y1 + y2).

Since ϕ2 is almost unperforated, we obtain ϕ2(y′) ≤ ϕ2(y1) +ϕ2(y2) ≤ αx(t1) +
αx(t2). Taking suprema on y′, and then on y, we deduce αx(t1 + t2) ≤ αx(t1) +
αx(t2), as desired. This proves that αx is additive in Zsoft.

Lemma 5.1 shows that αx : Z → T is a generalized Cu-morphism. �

Theorem 5.5. Let ϕ1 : S1 → S2 and ϕ2 : S2 → T be (generalized) Cu-morphisms.
Assume that ϕ1 is almost divisible, and that ϕ2 is almost unperforated. Then, there
exists a (generalized) Cu-morphism β : S1⊗Z → T such that the following diagram
commutes

S1
ϕ1 //

−⊗1
##

S2
ϕ2 // T

S1 ⊗ Z
β

<<

Proof. We define the map α : S1 × Z → T by

α(x, t) := αx(t),

which satisfies α(x, 1) = ϕ2ϕ1(x).
We will now prove that α is a generalized Cu-bimorphism. Using [APT18, The-

orem 6.3.3 (1)], this will imply the existence of β : S ⊗ Z → T with the required
properties.

Note that α(x, ·) = αx is a generalized Cu-morphism by the results above.
Further, α(·, n) is trivially a generalized Cu-morphism for every n ∈ Zc. Set
γt(x) := α(x, t) for every t ∈ Zsoft, and let us show that γt is a generalized Cu-mor-
phism.

To see that γt preserves order, take x0, x ∈ S1 such that x0 ≤ x. Clearly, one
has

Φ(t, ϕ1(x0)) ⊆ Φ(t, ϕ1(x))

and thus γt(x0) = αx0
(t) ≤ αx(t) = γt(x).

Now take (xd)d in S1 increasing with supremum x. Then, for any element y ∈
µ((k, n), 0, ϕ1(x)) with k/n < t, take y′ � y and find d ∈ N such that y′ ∈
µ((k, n), 0, ϕ1(xd)). This shows that ϕ2(y′) ≤ γt(xd) and, consequently, ϕ2(y) ≤
supd γt(xd). Taking suprema, one gets γt(x) ≤ supd γt(xd). Since γt is order-
preserving, we also obtain supd γt(xd) ≤ γt(x). In other words, γt preserves suprema
of increasing sequences.

To prove that γt is superadditive, take x1, x2 ∈ S1 and let y1, y2 ∈ S2 be such
that yi ∈ µ((ki, ni), 0, ϕ1(xi)) for some ki, ni’s such that ki/ni < t. Find k, n ∈ N
such that ki/ni < k/(n + 1) and k/n < t. Take y′i ∈ S2 such that y′i � yi, and
let x′i ∈ S1 be such that x′i � xi and y′i ∈ µ((ki, ni), 0, ϕ1(x′i)). Using almost
divisibility of ϕ1, find zi ∈ µ((k, n), ϕ1(x′i), ϕ1(xi)). By Lemma 5.2 (1), we get
ϕ2(y′i) ≤ ϕ2(zi). Note that we have z1 + z2 ∈ µ((k, n), 0, ϕ1(x1 + x2)). Thus, one
gets

ϕ2(y′1) + ϕ2(y′2) ≤ ϕ2(z1) + ϕ2(z2) = ϕ2(z1 + z2) ≤ αx1+x2(t) = γt(x1 + x2).

Taking suprema on y′1 and y′2, this implies ϕ2(y1)+ϕ2(y2) ≤ γt(x1 +x2). Taking
now suprema on y1, y2, k and n gives γt(x1) + γt(x2) ≤ γt(x1 + x2).

Conversely, to prove subadditivity, let y ∈ µ((k, n), 0, ϕ1(x1 + x2)). Take y′ � y
and let x′i � xi be such that y′ ∈ µ((k, n), 0, ϕ1(x′1 + x′2)). Find l,m ∈ N such
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that k/n < l/(m + 1) and l/m < t. Find yi ∈ µ((l,m), ϕ1(x′i), ϕ1(xi)). Then,
y1 + y2 ∈ µ((l,m), ϕ1(x′1 + x′2), ϕ1(x1 + x2)). By Lemma 5.2, one obtains ϕ2(y′) ≤
ϕ2(y1) + ϕ2(y2). Again, this implies ϕ2(y) ≤ γt(x1) + γt(x2) and, consequently,
γt(x1 + x2) ≤ γt(x1) + γt(x2).

We have shown that each coordinate of α is a generalized Cu-morphism. In
particular, we know that there exists a generalized Cu-morphism β : S1 ⊗ Z → T
with the desired properties; see [APT18, Lemma 6.3.2, Theorem 6.3.3].

Now assume that ϕ1 and ϕ2 are Cu-morphisms. To prove that α is in fact a
Cu-bimorphism, take t′, t ∈ Z and x′, x ∈ S such that t′ � t and x′ � x. We have
to show that α(x′, t′) � α(x, t) . If t′ or t are in N, we may assume t = t′. In
this case, one has α(x′, t) = tϕ2ϕ1(x′) � tϕ2ϕ1(x) = α(x, t) because both ϕ1 and
ϕ2 are Cu-morphisms. Finally, assume t′, t ∈ (0,∞]. Take x1, x2 ∈ S1 such that
x′ � x1 � x2 � x.

Find l1, l2,m1,m2 ∈ N such that

t′ <
l1

m1 + 1
,

l1
m1

<
l2

m2 + 1
,

l2
m2

< t.

By almost divisibility of ϕ1, there exist elements y1, y2 ∈ S2 such that y1 ∈
µ((l1,m1), ϕ1(x′), ϕ1(x1)) and y2 ∈ µ((l2,m2), ϕ1(x2), ϕ1(x)). By Lemma 5.2 (2),
one gets ϕ2(y1)� ϕ2(y2) ≤ α(x, t).

Now note that for every y ∈ µ((k, n), 0, ϕ1(x′)) with k/n < t′, one has k/n <
l1/(m1 + 1). Thus, another application of Lemma 5.2 (1) gives ϕ2(y) ≤ ϕ2(y1). In
other words, α(x′, t′) ≤ ϕ2(y1). Since we already know that ϕ2(y1) � α(x, t), one
gets α(x′, t′)� α(x, t), as desired.

Now [APT18, Theorem 6.3.3] shows that β : S1⊗Z → T is a Cu-morphism with
the desired properties. �

Corollary 5.6. Let ϕ : S → T be a Cu-morphism. Then,

(i) if S is almost divisible and ϕ is almost unperforated, ϕ factorizes through
S ⊗ Z.

(ii) if T is almost unperforated and ϕ is almost divisible, ϕ factorizes through
S ⊗ Z.

Proof. For (i), consider the composition of maps S → S → T and apply Theo-
rem 5.5. For (ii), consider S → T → T and apply Theorem 5.5. �

Theorem 5.5 above provides a partial answer to Question 3.10:

Theorem 5.7. Let θ1 : A1 → A2 and θ2 : A2 → B be pure ∗-homomorphisms.
Then, there exists a Cu-morphism β such that the following diagram commutes

Cu(A1)
Cu(θ2θ1)

//

−⊗1
''

Cu(B)

Cu(A1)⊗ Cu(Z)

β

77

One also obtains the following proposition, which answers Question 3.10 com-
pletely when the initial domain is an AF-algebra and the codomain is of stable
rank one. We believe that this result may be far more general, but new or tinkered
techniques need to be developed in order to do so; see Question 5.9.

Proposition 5.8. Let A1 be a unital AF-algebra, and let B be a unital C∗-algebra
of stable rank one. Let θ1 : A1 → A2 and θ2 : A2 → B be unital, pure *-homo-
morphisms. Then, θ2θ1 factors, up to approximately unitarily equivalence, through
A⊗Z.
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Proof. The induced composition of Cu-morphisms factorizes through Cu(A)⊗Cu(Z)
by Theorem 5.5. It follows from [APT18, Proposition 6.4.13] that Cu(A)⊗Cu(Z) ∼=
Cu(A⊗Z).

Further, the C∗-algebra A ⊗ Z is an inductive limit of 1-dimensional NCCW
complexes with trivial K1-group. The result now follows from [Rob12, Theo-
rem 1.0.1]. �

Note that there are two obstructions to generalizing Proposition 5.8. First,
the Cuntz semigroup tensor product does not generally behave well with its C∗-
algebraic counterpart. For example, it is known that Cu(C[0, 1]) ⊗ Cu(Z) 6∼=
Cu(C[0, 1] ⊗ Z); see [APT18, Proposition 6.4.4]. Secondly, the only currently
available result for lifting ∗-homomorphisms is Robert’s [Rob12, Theorem 1.0.1].
However, it is conceivable that such result can be generalized whenever A,B are
sufficiently noncommutative (say, if A,B are simple) and Cu(θ) maps every Cuntz
class to a strongly soft class. The following question is related to the first of the
two obstructions.

Question 5.9. Let A,B be C∗-algebras, and let ψ : Cu(A) ⊗ Cu(Z) → Cu(B) be
a Cu-morphism. When does there exist a Cu-morphism ρ : Cu(A ⊗ Z) → Cu(B)
such that ψ([a]⊗ 1) = ρ([a⊗ 1])?

As shown by Winter in [Win12, Corollary 7.4], a separable, unital, simple, non-
elementary C∗-algebra of locally finite nuclear dimension is pure if and only if it is
Z-stable. In analogy to this result, one may ask:

Question 5.10. Let A,B be C∗-algebras. Under which conditions on A and B
does every pure ∗-homomorphism θ : A→ B factor (in a suitable sense) through a
Z-stable C∗-algebra?

Restricting the codomain in Proposition 5.8 further, we obtain a first answer to
Question 5.10.

Corollary 5.11. Let A be a unital AF-algebra, and let B be a unital C∗-algebra
of stable rank one and with strict comparison. Let θ : A → B be a unital, pure ∗-
homomorphism. Then, θ factors up to approximately unitarily equivalence through
A⊗Z.

Remark 5.12. Following the ideas from Definition 3.2, one could also define other
Cu-like notions for morphisms, such as algebraicity and (weak) (2, ω)-divisibility.

6. Soft and rational ∗-homomorphisms

In this last section we exploit Theorem 5.7 in two cases of interest: Pure maps
with a soft image (Definition 6.6), and rational maps (Definition 6.1). These notions
are meant to generalize tensorial absorption, at a Cuntz semigroup level, of the
Jacelon-Razak algebra and UHF-algebras respectively. In contrast to Theorem 5.7,
Cu-tensor products and C∗-tensor products of such algebras do behave nicely. This
allows us to show that a composition of maps always factors (at the level of Cu)
through A⊗Mq and A⊗W respectively; see Theorems 6.3 and 6.10.

6.1. q-rational morphisms. Given a supernatural number q such that q = q2

and q 6= 1, let Mq denote the UHF-algebra associated to q. As shown in [APT18,
Section 7.4], Cu(Mq) ∼= Kq t (0,∞] where Kq is the subset of Q+ formed by the

elements of the form k
n with k, n coprime and n a divisor of q.

Adapting [APT18, Definition 7.4.6] to our setting, we define:

Definition 6.1. Let ϕ : S → T be a generalized Cu-morphism, and let q be a
supernatural number as above. We will say that ϕ is q-rational if it is both
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(i) q-divisible, that is, if for every x ∈ S and every finite divisor n of q there
exists y ∈ T such that ϕ(x) = ny.

(ii) q-unperforated, that is, if whenever nx ≤ ny, for some finite divisor n of q,
one has ϕ(x) ≤ ϕ(y).

As shown in [APT18, Theorem 7.4.10], a Cu-semigroup S tensorially absorbs
Cu(Mq) if and only if S is q-divisible and q-unperforated. Thus, examples of mor-
phisms satisfying the two conditions above include all morphisms whose domain or
codomain absorbs Cu(Mq) tensorially.

Proposition 6.2. Let q be a supernatural number such that q = q2 and q 6= 1.
Let ϕ1 : S1 → S2 be a q-divisible (generalized) Cu-morphism and let ϕ2 : S2 → T
be a q-unperforated (generalized) Cu-morphism. Then, there exists a (generalized)
Cu-morphism γ : S ⊗ Cu(Mq)→ T such that γ(x⊗ 1) = ϕ2ϕ1(x).

Proof. We mimic the approach of [APT18, Theorem 7.4.10].
First, note that for every x ∈ S and every n divisor of q there exists a unique

element y ∈ ϕ2(S2) such that y = ϕ2(z) with ϕ1(x) = nz. Indeed, existence
follows from q-divisibility of ϕ1, while uniqueness is given by ϕ2. Thus, the map
ωn : S → T given by x 7→ y is well-defined. It is readily checked that ωn is a
(generalized) Cu-morphism whenever ϕ1 and ϕ2 are.

Further, it follows from Theorem 5.5 that there exists a (generalized) Cu-bimor-
phism α : S × Z → T such that α(x, 1) = ϕ2ϕ1(x). Now, define a (generalized)
Cu-bimorphism αq : S × (Kq t (0,∞]) → T as follows: Given t ∈ (0,∞], simply

set αq(x, t) := α(x, t). Else, if t = k
n for some (unique) coprime pair k, n with

n a divisor of q, set αq(x, t) := kωn(x). By construction, αq(·, t) is a generalized
Cu-morphism.

A proof analoguous to that of Lemma 5.1 shows that αq(x, ·) is a generali-
zed Cu-morphism if and only if αq(x, ·)|(0,∞] is a generalized Cu-morphism and

αq(x, σ( 1
n )) ≤ αq(x, 1

n ) ≤ αq(x, σ( 1
n )+ε) for every ε > 0 and any n dividing q. Note

that the first condition is satisfied by construction of α, while the second condition is
readily checked after a careful examination of αq. Thus, [APT18, Theorem 6.3.3 (1)]
implies the existence of the map γ with the required properties. �

We know from [APT18, Proposition 7.6.3] that Cu(A⊗Mq) ∼= Cu(A)⊗Cu(Mq)
always. Thus, one gets the following result, where ∗-homomorphism and Cu-mor-
phism can be changed to cpc. order-zero map and generalized Cu-morphism re-
spectively.

Theorem 6.3. Let θ1 : A1 → A2 and θ2 : A2 → B be ∗-homomorphisms. Assume
that θ1 is q-divisible and that θ2 is q-unperforated. Then, there exists a Cu-mor-
phism β : Cu(A ⊗Mq) → Cu(B) such that Cu(θ2θ1)[a] = β([a ⊗ 1]) for each [a] ∈
Cu(A).

Applying Robert’s classification result ([Rob12, Theorem 1.0.1]), one obtains:

Corollary 6.4. Retain the above assumptions. Assume that A1 is a unital C∗-
algebra stably isomorphic to an inductive limit of 1-dimensional NCCW-complexes
with trivial K1-group, that B is unital and of stable rank one, and that θ1 and θ2 are
unital. Then, θ2θ1 factors, up to approximate unitary equivalence, through A⊗Mq.

6.2. Soft maps. Recall that the Cuntz semigroup of the Jacelon-Razak algebra
W is isomorphic to the monoid [0,∞]. As shown in [APT18, Theorem 7.5.4], every
element in a pure Cu-semigroup S is strongly soft (see Paragraph 6.5 below) if and
only if S ∼= S ⊗ Cu(W). We show the analogue of Theorem 5.5 in Theorem 6.9.
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6.5 (Soft elements and strongly soft Cuntz classes). Let S be a Cu-semigroup, and
let x ∈ S. Recall from [TV24b, Definition 4.2] that x is strongly soft if, for any
x′ ∈ S such that x′ � x, there exists t ∈ S such that x′ + t ≤ x ≤ ∞t. Making an
abuse of notation, the set of strongly soft elements is usually denoted by Ssoft.

Let A be a stable C∗-algebra. Under the presence of sufficient non-commutativity
on A (for example, if A has the Global Glimm Property), a positive element a ∈ A+

has a strongly soft Cuntz class if and only if a is Cuntz equivalent to a soft element,
that is, an element b ∈ A+ such that no nontrivial quotient of bAb is unital; this
equivalence is proved in [AVTV23].

Definition 6.6. Let ϕ : S → T be a generalized Cu-morphism. We will say that ϕ
is soft if ϕ(S) ⊆ Tsoft.

Further, ϕ will be said to have Cu(W)-multiplication if it is soft and has Cu(Z)-
multiplication.

Remark 6.7.

(1) Let θ : A → B be a ∗-homomorphism between stable C∗-algebras, and
assume that B satisfies the Global Glimm Property. Then, Cu(θ) has
Cu(W)-multiplication if and only if θ is pure and θ(a) is Cuntz equivalent
to a soft element for every a ∈ A+.

(2) Note the analogue statements of Lemma 4.3 and Propositions 4.1, 4.2 and
4.5 also work with Cu(W)-multiplication instead of Cu(Z)-multiplication.

Example 6.8. By (the analogue of) Proposition 4.2, any ∗-homomorphism A → B
that factorizes through A⊗W induces a Cu-morphism with Cu(W)-multiplication.

As noted in [Gab20, Remark 3.21], the infinite repeat φ⊗1M(K) : A→M(B⊗K)
of any ∗-homomorphism of the form A→M(B) factorizes through M(B)⊗O2.

Since every O2-stable C∗-algebra is purely infinite by [KR00, Theorem 5.11], its
Cuntz semigroup has {0,∞}-multiplication and, also, [0,∞]-multiplication. Thus,
it follows that Cu(φ ⊗ 1M(K)) always has Cu(W)-multiplication regardless of our
choice of A and B.

Theorem 6.9. Let ϕ1 : S1 → S2 and ϕ2 : S2 → T be (generalized) Cu-morphisms.
Assume that ϕ1 is soft and almost divisible, and that ϕ2 is almost unperforated.
Then, there exists a (generalized) Cu-morphism γ : S1 ⊗ [0,∞] → T such that
γ(x⊗ 1) = ϕ2ϕ1(x).

Proof. Let β : S1 ⊗ Z → T be the map constructed in Theorem 5.5, and denote by
γ the restriction of β to (S ⊗ Z)soft

∼= S ⊗ [0,∞].
Let x ∈ S1 and take x′ ∈ S1 such that x′ � x. Then, since ϕ1(x) is soft,

there exists n ∈ N such that (n + 1)ϕ1(x′) ≤ nϕ1(x); see, for example, [TV24b,
Proposition 4.5]. This implies that ϕ1(x′) ∈ µ((n, n+1), 0, ϕ1(x)) and, in particular,
that ϕ2ϕ1(x′) ∈ Φ(1, ϕ1(x)). Thus, one has ϕ2ϕ1(x′) ≤ γ(x ⊗ 1) for every x′.
Consequently, ϕ2ϕ1(x) ≤ γ(x⊗ 1). Further, note that one gets

γ(x⊗ 1) = β(x⊗ 1Zsoft
) ≤ β(x⊗ 1Z) = ϕ2ϕ1(x),

that is, γ(x⊗ 1) = ϕ2ϕ1(x), as desired. �

Combining [Rob13, Theorem 5.1.2] and [APT18, Proposition 7.6.3], one has that
Cu(A⊗W) ∼= Cu(A)⊗ [0,∞]; hence, we obtain the following result.

Theorem 6.10. Let θ1 : A1 → A2 be a soft and pure ∗-homomorphism, and
let θ2 : A2 → B be a pure ∗-homomorphism. Then, there exists a Cu-morphism
β : Cu(A⊗W)→ Cu(B) such that Cu(θ2θ1)[a] = β([a⊗ 1]) for each [a] ∈ Cu(A).
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