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Asymptotic uniform smoothness and convexity

Consider a real Banach space X and let Sx be its unit sphere. For t > 0,
x € Sx we shall consider

Ox(t) = inf sup inf ||x+ ty|| — 1;
XESX dim(X/Y)<oo YESY

px(t) = sup inf sup ||x +ty|| —1
(0= 30 oo ® | |
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Asymptotic uniform smoothness and convexity

Consider a real Banach space X and let Sx be its unit sphere. For t > 0,
x € Sx we shall consider

dx(t) = inf sup inf |[x +tyl]| -1,
XESX dim(X/Y)<o0 YESY

px(t) = sup inf sup |[x +ty|| -1
M s dim(X/Y)<o0 yes,

The space X is said to be asymptotically uniformly convex (AUC for short)
if

0x(t) > 0 for each t >0

and it is said to be asymptotically uniformly smooth (AUS for short) if

lim t 15 =
lim ~"px(t) = 0
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Spaces of compact operators

For which Banach spaces X and Y is the space of compact operators
K(X,Y) an AUS space? J
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Spaces of compact operators

For which Banach spaces X and Y is the space of compact operators
K(X,Y) an AUS space?

Theorem (Lennard, 1990)
K(l2,02) is AUS with power type 2.
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Spaces of compact operators

For which Banach spaces X and Y is the space of compact operators
K(X,Y) an AUS space?

Theorem (Lennard, 1990)
K(l2,02) is AUS with power type 2.

Theorem (Besbes, 1992)
If1 < p < oo then K({p,£y) is AUS with power type p'.

Theorem (Dilworth—Kutzarova—Randrianarivony—Revalski—Zhivkov,
2013)

If1 < p,q< oo then K({p,Lq) is AUS with power type min{p’, q}
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Spaces of compact operators

Recall that, under suitable assumptions, K(X, Y) is isometric to the
injective tensor product (X* ®: Y, | ||<)-
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Assume that X and Y are AUS spaces. Is X ®. Y an AUS space? )

n n
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n n
1> " xi @ yille = sup{D_ x*(xi)y"(yi) : x* € Sx=,y* € Sy=}
i=1 i=1

We were able to answer that question in the particular case in which X
and Y are strongly AUS spaces.
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We were able to answer that question in the particular case in which X
and Y are strongly AUS spaces.

Theorem (Causey, 2015)
S5z(X ®e Y) = max{5z(X), Sz(Y)} for separable spaces X and Y. J
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Spaces of compact operators

Recall that, under suitable assumptions, K(X, Y) is isometric to the
injective tensor product (X* ®. Y, | |¢)-

Assume that X and Y are AUS spaces. Is X ®. Y an AUS space? )

HZX:(X)}/:HE—SUP{ZX X))y (yi) i x* € Sx=,y" € Sy+}

We were able to answer that question in the particular case in which X
and Y are strongly AUS spaces.

Theorem (Causey, 2015)
S5z(X ®e Y) = max{5z(X), Sz(Y)} for separable spaces X and Y. J

In particular, X ®. Y admits an equivalent AUS norm if and only if X and
Y do.
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Motivation

A sequence (E,), of finite dimensional subspaces of X is call a finite
dimensional decomposition (FDD for short) if every x € X has a unique
representation of the form x = 220:1 Xn, With x, € E, for every n.
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Motivation

A sequence (E,), of finite dimensional subspaces of X is call a finite
dimensional decomposition (FDD for short) if every x € X has a unique
representation of the form x = 220:1 Xn, With x, € E, for every n.

In addition, we shall denote H, = @;_; E; and H" = @2 . E;.

Assume that there is a shrinking FDD (E,), of X. For each t > 0 we have:

ox(t) = ,;2& su>p inf{||x+ ty|| —1:x€ H,NSx,y € H" N Sx},
m>n

px(t) =sup inf sup{||x+ty|| —1:x€ H,NSx,y € H" N Sx}.
neN m2n

L.C. Garcia-Lirola (Universidad de Murcia)

AUS in spaces of compact operators February, 2016 8 /17



Strongly AUC and strongly AUC spaces

Definition

Let X a Banach space with a monotone FDD (E,). Denote H, = @7, E;
and H" = @2, ., Ei. X is said to be strongly AUC with respect to (Ey),
if the modulus defined by

gx,(E,,)(t) =inf{||x+ ty|| —1:x € Hy,y € H",||x|]| = |ly|| = 1,n € N}

satisfies that sdx (g,)(t) > O for each t > 0.
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Strongly AUC and strongly AUC spaces

Definition
Let X a Banach space with a monotone FDD (E,). Denote H, = @7, E;

and H" = @2, ., Ei. X is said to be strongly AUC with respect to (Ey),
if the modulus defined by

§X7(En)(t) =inf{||x+ ty|| —1:x € Hy,y € H",||x|]| = |ly|| = 1,n € N}

satisfies that §X,(En)(t) > 0 for each t > 0. The space X is said to be
strongly AUS with respect to (E,), if

5Px (£, (1) = sup{llx + ty|l =1 : x € Hn,y € H", ||x|| = |ly|l = 1,n € N}

satisfies that lim;_q t‘lﬁx,(b—n)(t) =0.
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Some examples

a) If X is an £p-sum of finite dimensional spaces, 1 < p < oo, then
sox(t) = spx(t) = (L +tP)1/P — 1.
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a) If X is an £p-sum of finite dimensional spaces, 1 < p < oo, then
sox(t) = spx(t) = (L +tP)1/P — 1.

b) If X is a cp-sum of finite dimensional spaces, then X is strongly AUS
and 5px(t) = 0 for each t € (0, 1].
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Some examples

a) EX is an {p-sum of finite dimensional spaces, 1 < p < oo, then
sox(t) =3px(t) = (1 + tP)/P — 1.

b) If X is a co-sum of finite dimensional spaces, then X is strongly AUS
and Spx(t) = 0 for each t € (0,1].

c) The James space J with the norm

m 1/2
|[(xn)nll = sup (Z(Xn2i1 - X”2i)2 + 2(Xn2m+1)2>

1<m<...<mm+1 i—1

given by Prus is strongly AUS and 5p,(t) < (1 + 2t?)Y/2 — 1.
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Some examples

a) EX is an {p-sum of finite dimensional spaces, 1 < p < oo, then
sox(t) =3px(t) = (1 + tP)/P — 1.

b) If X is a co-sum of finite dimensional spaces, then X is strongly AUS
and Spx(t) = 0 for each t € (0,1].

c) The James space J with the norm

m 1/2

On)all = sup (Z(Xn2;1 — Xny ) + 2(Xn2m+1)2>
1<m<...<mm+1 i—1

given by Prus is strongly AUS and 5p,(t) < (1 + 2t?)Y/2 — 1.

d) Lancien proved that if T is a well-founded tree in w<* then the
James Tree space JT is strongly AUC and s6,7(t) > (1 + t?)Y/2 — 1.
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Some examples

a) EX is an {p-sum of finite dimensional spaces, 1 < p < oo, then
sox(t) =3px(t) = (1 + tP)/P — 1.

b) If X is a co-sum of finite dimensional spaces, then X is strongly AUS
and Spx(t) = 0 for each t € (0,1].

c) The James space J with the norm

m 1/2
|[(xn)nll = sup (Z(Xn2i1 - Xn2i)2 + 2(Xn2m+1)2>

1<m<...<mm+1 i—1

given by Prus is strongly AUS and 5p,(t) < (1 + 2t?)Y/2 — 1.
d) Lancien proved that if T is a well-founded tree in w<“ then the
James Tree space JT is strongly AUC and s6,7(t) > (1 + t?)Y/2 — 1.
e) Every uniformly smooth (resp. uniformly convex) space with a
monotone FDD is strongly AUS (resp. strongly AUC).
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Properties of strongly AUC and strongly AUS spaces

Let X be a Banach space with a monotone FDD (E,),.
a) If X is strongly AUS w.r.t. (Ep), then (E,)n is shrinking.
b) If X is strongly AUC w.r.t. (E,)n then (E,), is boundedly complete.
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Let X be a Banach space with a monotone FDD (E,),.
a) If X is strongly AUS w.r.t. (Ep), then (E,)n is shrinking.
b) If X is strongly AUC w.r.t. (E,)n then (E,), is boundedly complete.

Thus, X is reflexive whenever it is strongly AUS and strongly AUC w.r.t.
the same FDD.

Girardi proved in 2001 that JT, is AUC. Since JT, is not isomorphic to a
dual space, it does not admit a boundedly complete FDD. Thus JT, is not
a strongly AUC space.
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Properties of strongly AUC and strongly AUS spaces

Let X be a Banach space with a monotone FDD (E,),.
a) If X is strongly AUS w.r.t. (Ep), then (E,)n is shrinking.
b) If X is strongly AUC w.r.t. (E,)n then (E,), is boundedly complete.

Thus, X is reflexive whenever it is strongly AUS and strongly AUC w.r.t.
the same FDD.

Girardi proved in 2001 that JT, is AUC. Since JT, is not isomorphic to a
dual space, it does not admit a boundedly complete FDD. Thus JT, is not
a strongly AUC space.

Let X be a Banach space with a monotone shrinking FDD and
0<o,7<1. Then

a) If spx (o) < o1, then s6x=(37) > oT.
b) If s6x«(7) > o, then 3px (o) < o7.
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Properties of strongly AUC and strongly AUS spaces

Let X be a Banach space with a monotone FDD (E,),.
a) If X is strongly AUS w.r.t. (Ep), then (E,)n is shrinking.
b) If X is strongly AUC w.r.t. (E,)n then (E,), is boundedly complete.

Thus, X is reflexive whenever it is strongly AUS and strongly AUC w.r.t.
the same FDD.

Girardi proved in 2001 that JT, is AUC. Since JT, is not isomorphic to a
dual space, it does not admit a boundedly complete FDD. Thus JT, is not
a strongly AUC space.

Let X be a Banach space with a monotone shrinking FDD and
0<o,7<1. Then

a) If spx (o) < o, then séx«(37) > oT.

b) If séx+(7) > o, then 5px(0) < o7.

Thus, X is strongly AUS with power type p if and only if X* is strongly
AUC with power type p’, the conjugate exponent of p.

v
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AUS tensor products

Let X, Y be Banach spaces admitting monotone FDDs. Then

Pxe.v(t) < (L+35px(4t))(1+5py(4t)) — 1

for every 0 < t < 1/4.
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AUS tensor products

Let X, Y be Banach spaces admitting monotone FDDs. Then

Pxe.v(t) < (L+35px(4t))(1+5py(4t)) — 1

for every 0 < t < 1/4.

@ Assume X is strongly AUS with power type p and Y is strongly AUS
with power type g. Then X ®. Y is AUS with power type

min{p, q}.
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AUS tensor products

Let X, Y be Banach spaces admitting monotone FDDs. Then

Pxe.v(t) < (L+35px(4t))(1+5py(4t)) — 1

for every 0 < t < 1/4.

@ Assume X is strongly AUS with power type p and Y is strongly AUS
with power type g. Then X ®. Y is AUS with power type
min{p, g}.If moreover Y* is separable then N/(X, Y*) is weak* AUC
with power type max{p’,q'}. By a result of Van Dulst and Sims, it
follows that N (X, Y*) has the weak* fixed point property.

L.C. Garcia-Lirola (Universidad de Murcia) AUS in spaces of compact operators February, 2016 12 /17



AUS tensor products

Let X, Y be Banach spaces admitting monotone FDDs. Then

Pxe.v(t) < (L+35px(4t))(1+5py(4t)) — 1

for every 0 < t < 1/4.

@ Assume X is strongly AUS with power type p and Y is strongly AUS
with power type g. Then X ®. Y is AUS with power type
min{p, g}.If moreover Y* is separable then N/(X, Y*) is weak* AUC
with power type max{p’,q'}. By a result of Van Dulst and Sims, it
follows that N (X, Y*) has the weak* fixed point property.

@ Assume that X is strongly AUC with power type p w.r.t. an shrinking
FDD, and Y is strongly AUS with power type g. Then K(X,Y) is
AUS with power type min{p’, q}.
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Orlicz spaces

An Orlicz function is a continuous convex function M defined on Rt such
that M(0) = 0 and lim¢_oc M(t) = +00.
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Orlicz spaces

An Orlicz function is a continuous convex function M defined on Rt such

that M(0) = 0 and lim¢_oc M(t) = +00. To any Orlicz function M we
associate the space

[e.e]
hy = {(xn) € RN : Z M(|xn|/p) < 400 for some p > 0}
n=1

endowed with the Luxemburg norm

xll = inf{p > 0: > M(xal/p) < 1}

n=1
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Orlicz spaces

An Orlicz function is a continuous convex function M defined on R such

that M(0) = 0 and lim¢_oc M(t) = +00. To any Orlicz function M we
associate the space

o0
hv = {(xn) € RV : Z M(|xn|/p) < 400 for some p > 0}
n=1

endowed with the Luxemburg norm

xll = inf{p > 0: > M(xal/p) < 1}

n=1
The Boyd indices of an Orlicz function M are defined as follows:
M(uv)
ap = su ©osu < 400
M Pla O<u,\E)§1 uiM(v) J
M(uv)

Pm = inf{q: 0<Iur7]\f§1 uIM(v) 0}
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AUS and AUC Orlicz spaces

Theorem (Gonzalo—Jaramillo—Troyanski, 2007)

hp is AUS if apy > 1. Moreover, iy is the supremum of the numbers

« > 1 such that the modulus of asymptotic smoothness of hy, is of power
type a.
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AUS and AUC Orlicz spaces

Theorem (Gonzalo—Jaramillo—Troyanski, 2007)

hp is AUS if apy > 1. Moreover, iy is the supremum of the numbers
« > 1 such that the modulus of asymptotic smoothness of hy, is of power
type .

Theorem (Borel-Mathurin, 2010)

hp is AUC if By < oo, and By is the infimum of the numbers B > 0 such
that its modulus of asymptotic convexity is of power type (3.

v
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AUS and AUC Orlicz spaces

Theorem (Gonzalo—Jaramillo—Troyanski, 2007)

hp is AUS if apy > 1. Moreover, iy is the supremum of the numbers
« > 1 such that the modulus of asymptotic smoothness of hy, is of power

type .

Theorem (Borel-Mathurin, 2010)

hp is AUC if By < oo, and By is the infimum of the numbers B > 0 such
that its modulus of asymptotic convexity is of power type (3.

v

Moreover, their proofs show that hy is strongly AUS (resp. strongly AUC)
whenever it is AUS (resp. AUC).
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Compact operators on Orlicz spaces

Let M, N be Orlicz functions. The space K(hy, hy) is AUS if and only if
apm,any > 1 and By < +oo.
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Compact operators on Orlicz spaces

Let M, N be Orlicz functions. The space K(hy, hy) is AUS if and only if
am, oy > 1 and By < 4+o00. Moreover, min{3},, an} is the supremum of
the numbers a > 0 such that the modulus of asymptotic smoothness of

K(hm, hn) is of power type a.
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Compact operators on Orlicz spaces

Let M, N be Orlicz functions. The space K(hy, hy) is AUS if and only if
am, oy > 1 and By < 4+o00. Moreover, min{3},, an} is the supremum of
the numbers a > 0 such that the modulus of asymptotic smoothness of

K(hm, hy) is of power type .

Let M, N be Orlicz functions such that apy, any > 1 and Sy < oo. Then
N (hm, hy) has the weak* fixed point property.

February, 2016 16 / 17
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