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Asymptotic uniform smoothness and convexity
Consider a real Banach space X and let SX be its unit sphere. For t > 0,
x ∈ SX we shall consider

δX (t) = inf
x∈SX

sup
dim(X/Y )<∞

inf
y∈SY

||x + ty || − 1;

ρX (t) = sup
x∈SX

inf
dim(X/Y )<∞

sup
y∈SY

||x + ty || − 1

The space X is said to be asymptotically uniformly convex (AUC for short)
if

δX (t) > 0 for each t > 0

and it is said to be asymptotically uniformly smooth (AUS for short) if

lim
t→0

t−1ρX (t) = 0

.
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Spaces of compact operators

For which Banach spaces X and Y is the space of compact operators
K(X ,Y ) an AUS space?

Theorem (Lennard, 1990)

K(`2, `2) is AUS with power type 2.

Theorem (Besbes, 1992)

If 1 < p <∞ then K(`p, `p′) is AUS with power type p′.

Theorem (Dilworth–Kutzarova–Randrianarivony–Revalski–Zhivkov,
2013)

If 1 < p, q <∞ then K(`p, `q) is AUS with power type min{p′, q}
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Spaces of compact operators

Recall that, under suitable assumptions, K(X ,Y ) is isometric to the
injective tensor product (X ∗ ⊗ε Y , ‖ ‖ε).

Assume that X and Y are AUS spaces. Is X ⊗ε Y an AUS space?

||
n∑

i=1

xi ⊗ yi ||ε = sup{
n∑

i=1

x∗(xi )y∗(yi ) : x∗ ∈ SX∗ , y
∗ ∈ SY ∗}

We were able to answer that question in the particular case in which X
and Y are strongly AUS spaces.

Theorem (Causey, 2015)

Sz(X ⊗ε Y ) = max{Sz(X ),Sz(Y )} for separable spaces X and Y .

In particular, X ⊗ε Y admits an equivalent AUS norm if and only if X and
Y do.
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Motivation

A sequence (En)n of finite dimensional subspaces of X is call a finite
dimensional decomposition (FDD for short) if every x ∈ X has a unique
representation of the form x =

∑∞
n=1 xn, with xn ∈ En for every n.

In addition, we shall denote Hn =
⊕n

i=1 Ei and Hn =
⊕∞

i=n+1 Ei .

Assume that there is a shrinking FDD (En)n of X . For each t > 0 we have:

δX (t) = inf
n∈N

sup
m≥n

inf{||x + ty || − 1 : x ∈ Hn ∩ SX , y ∈ Hm ∩ SX} ,

ρX (t) = sup
n∈N

inf
m≥n

sup{||x + ty || − 1 : x ∈ Hn ∩ SX , y ∈ Hm ∩ SX} .
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Strongly AUC and strongly AUC spaces

Definition

Let X a Banach space with a monotone FDD (En). Denote Hn =
⊕n

i=1 Ei

and Hn =
⊕∞

i=n+1 Ei . X is said to be strongly AUC with respect to (En)n
if the modulus defined by

sδX ,(En)(t) = inf{||x + ty || − 1 : x ∈ Hn, y ∈ Hn, ||x || = ||y || = 1, n ∈ N}

satisfies that sδX ,(En)(t) > 0 for each t > 0.

The space X is said to be
strongly AUS with respect to (En)n if

sρX ,(En)(t) = sup{||x + ty || − 1 : x ∈ Hn, y ∈ Hn, ||x || = ||y || = 1, n ∈ N}

satisfies that limt→0 t−1sρX ,(En)(t) = 0.
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Some examples

a) If X is an `p-sum of finite dimensional spaces, 1 ≤ p <∞, then
sδX (t) = sρX (t) = (1 + tp)1/p − 1.

b) If X is a c0-sum of finite dimensional spaces, then X is strongly AUS
and sρX (t) = 0 for each t ∈ (0, 1].

c) The James space J with the norm

||(xn)n|| = sup
1≤n1<...<n2m+1

(
m∑
i=1

(xn2i−1 − xn2i )
2 + 2(xn2m+1)2

)1/2

given by Prus is strongly AUS and sρJ(t) ≤ (1 + 2t2)1/2 − 1.

d) Lancien proved that if T is a well-founded tree in ω<ω then the
James Tree space JT is strongly AUC and sδJT (t) ≥ (1 + t2)1/2 − 1.

e) Every uniformly smooth (resp. uniformly convex) space with a
monotone FDD is strongly AUS (resp. strongly AUC).
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Properties of strongly AUC and strongly AUS spaces

Let X be a Banach space with a monotone FDD (En)n.

a) If X is strongly AUS w.r.t. (En)n then (En)n is shrinking.

b) If X is strongly AUC w.r.t. (En)n then (En)n is boundedly complete.

Thus, X is reflexive whenever it is strongly AUS and strongly AUC w.r.t.
the same FDD.

Girardi proved in 2001 that JT∗ is AUC. Since JT∗ is not isomorphic to a
dual space, it does not admit a boundedly complete FDD. Thus JT∗ is not
a strongly AUC space.

Let X be a Banach space with a monotone shrinking FDD and
0 < σ, τ < 1. Then

a) If sρX (σ) < στ , then sδX∗(3τ) ≥ στ .

b) If sδX∗(τ) > στ , then sρX (σ) ≤ στ .

Thus, X is strongly AUS with power type p if and only if X ∗ is strongly
AUC with power type p′, the conjugate exponent of p.
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AUS tensor products

Let X ,Y be Banach spaces admitting monotone FDDs. Then

ρX⊗εY (t) ≤ (1 + sρX (4t))(1 + sρY (4t))− 1

for every 0 < t < 1/4.

Assume X is strongly AUS with power type p and Y is strongly AUS
with power type q. Then X ⊗ε Y is AUS with power type
min{p, q}.If moreover Y ∗ is separable then N (X ,Y ∗) is weak* AUC
with power type max{p′, q′}. By a result of Van Dulst and Sims, it
follows that N (X ,Y ∗) has the weak* fixed point property.

Assume that X is strongly AUC with power type p w.r.t. an shrinking
FDD, and Y is strongly AUS with power type q. Then K(X ,Y ) is
AUS with power type min{p′, q}.
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AUS with power type min{p′, q}.
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Orlicz spaces
An Orlicz function is a continuous convex function M defined on R+ such
that M(0) = 0 and limt→∞M(t) = +∞.

To any Orlicz function M we
associate the space

hM = {(xn) ∈ RN :
∞∑
n=1

M(|xn|/ρ) < +∞ for some ρ > 0}

endowed with the Luxemburg norm

||x ||M = inf{ρ > 0 :
∞∑
n=1

M(|xn|/ρ) ≤ 1}

The Boyd indices of an Orlicz function M are defined as follows:

αM = sup{q : sup
0<u,v≤1

M(uv)

uqM(v)
< +∞}

βM = inf{q : inf
0<u,v≤1

M(uv)

uqM(v)
> 0}
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AUS and AUC Orlicz spaces

Theorem (Gonzalo–Jaramillo–Troyanski, 2007)

hM is AUS if αM > 1. Moreover, αM is the supremum of the numbers
α > 1 such that the modulus of asymptotic smoothness of hM is of power
type α.

Theorem (Borel-Mathurin, 2010)

hM is AUC if βM <∞, and βM is the infimum of the numbers β > 0 such
that its modulus of asymptotic convexity is of power type β.

Moreover, their proofs show that hM is strongly AUS (resp. strongly AUC)
whenever it is AUS (resp. AUC).
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Compact operators on Orlicz spaces

Let M,N be Orlicz functions. The space K(hM , hN) is AUS if and only if
αM , αN > 1 and βM < +∞.

Moreover, min{β′M , αN} is the supremum of
the numbers α > 0 such that the modulus of asymptotic smoothness of
K(hM , hN) is of power type α.

Let M,N be Orlicz functions such that αM , αN > 1 and βN <∞. Then
N (hM , h

∗
N) has the weak* fixed point property.
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