Asymptotic uniform smoothness in spaces of compact operators

Luis C. García-Lirola

Ongoing work with Matías Raja

Universidad de Murcia

Function Theory on Infinite Dimensional Spaces XIV February, 2016

Research partially supported by

비로 (로) (로) (로) (묘) (리)

Table of Contents

2 Strongly AUC and strongly AUS spaces

3 Application to Orlicz spaces

Table of Contents

Strongly AUC and strongly AUS spaces

3 Application to Orlicz spaces

Asymptotic uniform smoothness and convexity

Consider a real Banach space X and let S_X be its unit sphere. For t > 0, $x \in S_X$ we shall consider

$$\overline{\delta}_X(t) = \inf_{x \in S_X} \sup_{\dim(X/Y) < \infty} \inf_{y \in S_Y} ||x + ty|| - 1;$$

$$\overline{\rho}_X(t) = \sup_{x \in S_X} \inf_{\dim(X/Y) < \infty} \sup_{y \in S_Y} ||x + ty|| - 1$$

ELE NOR

Asymptotic uniform smoothness and convexity

Consider a real Banach space X and let S_X be its unit sphere. For t > 0, $x \in S_X$ we shall consider

$$\overline{\delta}_X(t) = \inf_{x \in S_X} \sup_{\dim(X/Y) < \infty} \inf_{y \in S_Y} ||x + ty|| - 1;$$

$$\overline{\rho}_X(t) = \sup_{x \in S_X} \inf_{\dim(X/Y) < \infty} \sup_{y \in S_Y} ||x + ty|| - 1$$

L.C. Garcia-Lirola (Universidad de Murcia) AUS i

Asymptotic uniform smoothness and convexity

Consider a real Banach space X and let S_X be its unit sphere. For t > 0, $x \in S_X$ we shall consider

$$\overline{\delta}_X(t) = \inf_{x \in S_X} \sup_{\dim(X/Y) < \infty} \inf_{y \in S_Y} ||x + ty|| - 1;$$

$$\overline{\rho}_X(t) = \sup_{x \in S_X} \inf_{\dim(X/Y) < \infty} \sup_{y \in S_Y} ||x + ty|| - 1$$

The space X is said to be *asymptotically uniformly convex* (AUC for short) if

 $\overline{\delta}_X(t) > 0$ for each t > 0

and it is said to be asymptotically uniformly smooth (AUS for short) if

$$\lim_{t\to 0} t^{-1}\overline{\rho}_X(t) = 0$$

For which Banach spaces X and Y is the space of compact operators $\mathcal{K}(X, Y)$ an AUS space?

For which Banach spaces X and Y is the space of compact operators $\mathcal{K}(X, Y)$ an AUS space?

Theorem (Lennard, 1990)

 $\mathcal{K}(\ell_2, \ell_2)$ is AUS with power type 2.

For which Banach spaces X and Y is the space of compact operators $\mathcal{K}(X, Y)$ an AUS space?

Theorem (Lennard, 1990)

 $\mathcal{K}(\ell_2, \ell_2)$ is AUS with power type 2.

Theorem (Besbes, 1992)

If $1 then <math>\mathcal{K}(\ell_p, \ell_{p'})$ is AUS with power type p'.

For which Banach spaces X and Y is the space of compact operators $\mathcal{K}(X, Y)$ an AUS space?

Theorem (Lennard, 1990)

 $\mathcal{K}(\ell_2, \ell_2)$ is AUS with power type 2.

Theorem (Besbes, 1992)

If $1 then <math>\mathcal{K}(\ell_p, \ell_{p'})$ is AUS with power type p'.

Theorem (Dilworth–Kutzarova–Randrianarivony–Revalski–Zhivkov, 2013)

If $1 < p, q < \infty$ then $\mathcal{K}(\ell_p, \ell_q)$ is AUS with power type min $\{p', q\}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Recall that, under suitable assumptions, $\mathcal{K}(X, Y)$ is isometric to the injective tensor product $(X^* \otimes_{\varepsilon} Y, || \parallel_{\varepsilon})$.

Recall that, under suitable assumptions, $\mathcal{K}(X, Y)$ is isometric to the injective tensor product $(X^* \otimes_{\varepsilon} Y, || ||_{\varepsilon})$.

Assume that X and Y are AUS spaces. Is $X \otimes_{\varepsilon} Y$ an AUS space?

Recall that, under suitable assumptions, $\mathcal{K}(X, Y)$ is isometric to the injective tensor product $(X^* \otimes_{\varepsilon} Y, || ||_{\varepsilon})$.

Assume that X and Y are AUS spaces. Is $X \otimes_{\varepsilon} Y$ an AUS space?

$$||\sum_{i=1}^{n} x_{i} \otimes y_{i}||_{\varepsilon} = \sup\{\sum_{i=1}^{n} x^{*}(x_{i})y^{*}(y_{i}) : x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}\}$$

Recall that, under suitable assumptions, $\mathcal{K}(X, Y)$ is isometric to the injective tensor product $(X^* \otimes_{\varepsilon} Y, || ||_{\varepsilon})$.

Assume that X and Y are AUS spaces. Is $X \otimes_{\varepsilon} Y$ an AUS space?

$$||\sum_{i=1}^{n} x_{i} \otimes y_{i}||_{\varepsilon} = \sup\{\sum_{i=1}^{n} x^{*}(x_{i})y^{*}(y_{i}) : x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}\}$$

We were able to answer that question in the particular case in which X and Y are strongly AUS spaces.

Recall that, under suitable assumptions, $\mathcal{K}(X, Y)$ is isometric to the injective tensor product $(X^* \otimes_{\varepsilon} Y, || ||_{\varepsilon})$.

Assume that X and Y are AUS spaces. Is $X \otimes_{\varepsilon} Y$ an AUS space?

$$||\sum_{i=1}^{n} x_{i} \otimes y_{i}||_{\varepsilon} = \sup\{\sum_{i=1}^{n} x^{*}(x_{i})y^{*}(y_{i}) : x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}\}$$

We were able to answer that question in the particular case in which X and Y are strongly AUS spaces.

Theorem (Causey, 2015) $Sz(X \otimes_{\varepsilon} Y) = \max\{Sz(X), Sz(Y)\}$ for separable spaces X and Y.

JOC ELE

Recall that, under suitable assumptions, $\mathcal{K}(X, Y)$ is isometric to the injective tensor product $(X^* \otimes_{\varepsilon} Y, || ||_{\varepsilon})$.

Assume that X and Y are AUS spaces. Is $X \otimes_{\varepsilon} Y$ an AUS space?

$$||\sum_{i=1}^{n} x_{i} \otimes y_{i}||_{\varepsilon} = \sup\{\sum_{i=1}^{n} x^{*}(x_{i})y^{*}(y_{i}) : x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}\}$$

We were able to answer that question in the particular case in which X and Y are strongly AUS spaces.

Theorem (Causey, 2015)

 $Sz(X \otimes_{\varepsilon} Y) = \max\{Sz(X), Sz(Y)\}$ for separable spaces X and Y.

In particular, $X \otimes_{\varepsilon} Y$ admits an equivalent AUS norm if and only if X and Y do.

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の ○ ○

Table of Contents

2 Strongly AUC and strongly AUS spaces

3 Application to Orlicz spaces

-

Motivation

A sequence $(E_n)_n$ of finite dimensional subspaces of X is call a *finite* dimensional decomposition (FDD for short) if every $x \in X$ has a unique representation of the form $x = \sum_{n=1}^{\infty} x_n$, with $x_n \in E_n$ for every n.

Motivation

A sequence $(E_n)_n$ of finite dimensional subspaces of X is call a *finite* dimensional decomposition (FDD for short) if every $x \in X$ has a unique representation of the form $x = \sum_{n=1}^{\infty} x_n$, with $x_n \in E_n$ for every n. In addition, we shall denote $H_n = \bigoplus_{i=1}^n E_i$ and $H^n = \overline{\bigoplus_{i=n+1}^{\infty} E_i}$.

Assume that there is a shrinking FDD $(E_n)_n$ of X. For each t > 0 we have:

$$\overline{\delta}_X(t) = \inf_{n \in \mathbb{N}} \sup_{m \ge n} \inf\{||x + ty|| - 1 : x \in H_n \cap S_X, y \in H^m \cap S_X\},\$$

$$\overline{\rho}_X(t) = \sup_{n \in \mathbb{N}} \inf_{m \ge n} \sup\{||x + ty|| - 1 : x \in H_n \cap S_X, y \in H^m \cap S_X\}.$$

Strongly AUC and strongly AUC spaces

Definition

Let X a Banach space with a monotone FDD (E_n) . Denote $H_n = \bigoplus_{i=1}^n E_i$ and $H^n = \overline{\bigoplus_{i=n+1}^{\infty} E_i}$. X is said to be *strongly AUC* with respect to $(E_n)_n$ if the modulus defined by

$$\overline{s\delta}_{X,(E_n)}(t) = \inf\{||x + ty|| - 1 : x \in H_n, y \in H^n, ||x|| = ||y|| = 1, n \in \mathbb{N}\}$$

satisfies that $\overline{s\delta}_{X,(E_n)}(t) > 0$ for each t > 0.

Strongly AUC and strongly AUC spaces

Definition

Let X a Banach space with a monotone FDD (E_n) . Denote $H_n = \bigoplus_{i=1}^n E_i$ and $H^n = \overline{\bigoplus_{i=n+1}^{\infty} E_i}$. X is said to be *strongly AUC* with respect to $(E_n)_n$ if the modulus defined by

$$\overline{s\delta}_{X,(E_n)}(t) = \inf\{||x + ty|| - 1 : x \in H_n, y \in H^n, ||x|| = ||y|| = 1, n \in \mathbb{N}\}$$

satisfies that $\overline{s\delta}_{X,(E_n)}(t) > 0$ for each t > 0. The space X is said to be strongly AUS with respect to $(E_n)_n$ if

 $\overline{s\rho}_{X,(E_n)}(t) = \sup\{||x + ty|| - 1 : x \in H_n, y \in H^n, ||x|| = ||y|| = 1, n \in \mathbb{N}\}$ satisfies that $\lim_{t\to 0} t^{-1} \overline{s\rho}_{X,(E_n)}(t) = 0.$

伺 ト イヨト イヨト ヨヨ のくら

a) If X is an ℓ_p -sum of finite dimensional spaces, $1 \le p < \infty$, then $\overline{s\delta}_X(t) = \overline{s\rho}_X(t) = (1 + t^p)^{1/p} - 1$.

- a) If X is an ℓ_p -sum of finite dimensional spaces, $1 \le p < \infty$, then $\overline{s\delta}_X(t) = \overline{s\rho}_X(t) = (1 + t^p)^{1/p} 1$.
- b) If X is a c_0 -sum of finite dimensional spaces, then X is strongly AUS and $\overline{s\rho}_X(t) = 0$ for each $t \in (0, 1]$.

- a) If X is an ℓ_p -sum of finite dimensional spaces, $1 \le p < \infty$, then $\overline{s\delta}_X(t) = \overline{s\rho}_X(t) = (1 + t^p)^{1/p} 1$.
- b) If X is a c_0 -sum of finite dimensional spaces, then X is strongly AUS and $\overline{s\rho}_X(t) = 0$ for each $t \in (0, 1]$.
- c) The James space J with the norm

$$||(x_n)_n|| = \sup_{1 \le n_1 < \dots < n_{2m+1}} \left(\sum_{i=1}^m (x_{n_{2i-1}} - x_{n_{2i}})^2 + 2(x_{n_{2m+1}})^2 \right)^{1/2}$$

given by Prus is strongly AUS and $\overline{s\rho}_J(t) \leq (1+2t^2)^{1/2}-1$.

A = A = A = A = A = A = A

- a) If X is an ℓ_p -sum of finite dimensional spaces, $1 \le p < \infty$, then $\overline{s\delta}_X(t) = \overline{s\rho}_X(t) = (1 + t^p)^{1/p} 1$.
- b) If X is a c_0 -sum of finite dimensional spaces, then X is strongly AUS and $\overline{s\rho}_X(t) = 0$ for each $t \in (0, 1]$.
- c) The James space J with the norm

$$||(x_n)_n|| = \sup_{1 \le n_1 < \dots < n_{2m+1}} \left(\sum_{i=1}^m (x_{n_{2i-1}} - x_{n_{2i}})^2 + 2(x_{n_{2m+1}})^2 \right)^{1/2}$$

given by Prus is strongly AUS and $\overline{s\rho}_J(t) \leq (1+2t^2)^{1/2}-1.$

d) Lancien proved that if T is a well-founded tree in $\omega^{<\omega}$ then the James Tree space JT is strongly AUC and $\overline{s\delta}_{JT}(t) \ge (1+t^2)^{1/2} - 1$.

向下 イヨト イヨト ヨヨ つくつ

- a) If X is an ℓ_p -sum of finite dimensional spaces, $1 \le p < \infty$, then $\overline{s\delta}_X(t) = \overline{s\rho}_X(t) = (1 + t^p)^{1/p} 1$.
- b) If X is a c_0 -sum of finite dimensional spaces, then X is strongly AUS and $\overline{s\rho}_X(t) = 0$ for each $t \in (0, 1]$.
- c) The James space J with the norm

$$||(x_n)_n|| = \sup_{1 \le n_1 < \dots < n_{2m+1}} \left(\sum_{i=1}^m (x_{n_{2i-1}} - x_{n_{2i}})^2 + 2(x_{n_{2m+1}})^2 \right)^{1/2}$$

given by Prus is strongly AUS and $\overline{s\rho}_J(t) \leq (1+2t^2)^{1/2}-1$.

- d) Lancien proved that if T is a well-founded tree in $\omega^{<\omega}$ then the James Tree space JT is strongly AUC and $\overline{s\delta}_{JT}(t) \ge (1+t^2)^{1/2} 1$.
- e) Every uniformly smooth (resp. uniformly convex) space with a monotone FDD is strongly AUS (resp. strongly AUC).

・同ト (ヨト (ヨト ヨヨ) の()

Let X be a Banach space with a monotone FDD $(E_n)_n$.

- a) If X is strongly AUS w.r.t. $(E_n)_n$ then $(E_n)_n$ is shrinking.
- b) If X is strongly AUC w.r.t. $(E_n)_n$ then $(E_n)_n$ is boundedly complete.

Let X be a Banach space with a monotone FDD $(E_n)_n$.

- a) If X is strongly AUS w.r.t. $(E_n)_n$ then $(E_n)_n$ is shrinking.
- b) If X is strongly AUC w.r.t. $(E_n)_n$ then $(E_n)_n$ is boundedly complete.

Thus, X is reflexive whenever it is strongly AUS and strongly AUC w.r.t. the same FDD.

ELE SOC

Let X be a Banach space with a monotone FDD $(E_n)_n$.

- a) If X is strongly AUS w.r.t. $(E_n)_n$ then $(E_n)_n$ is shrinking.
- b) If X is strongly AUC w.r.t. $(E_n)_n$ then $(E_n)_n$ is boundedly complete.

Thus, X is reflexive whenever it is strongly AUS and strongly AUC w.r.t. the same FDD.

Girardi proved in 2001 that JT_* is AUC. Since JT_* is not isomorphic to a dual space, it does not admit a boundedly complete FDD. Thus JT_* is not a strongly AUC space.

Let X be a Banach space with a monotone FDD $(E_n)_n$.

- a) If X is strongly AUS w.r.t. $(E_n)_n$ then $(E_n)_n$ is shrinking.
- b) If X is strongly AUC w.r.t. $(E_n)_n$ then $(E_n)_n$ is boundedly complete.

Thus, X is reflexive whenever it is strongly AUS and strongly AUC w.r.t. the same FDD.

Girardi proved in 2001 that JT_* is AUC. Since JT_* is not isomorphic to a dual space, it does not admit a boundedly complete FDD. Thus JT_* is not a strongly AUC space.

Let X be a Banach space with a monotone shrinking FDD and 0 $<\sigma,\tau<1.$ Then

- a) If $\overline{s\rho}_X(\sigma) < \sigma\tau$, then $\overline{s\delta}_{X^*}(3\tau) \ge \sigma\tau$.
- b) If $\overline{s\delta}_{X^*}(\tau) > \sigma\tau$, then $\overline{s\rho}_X(\sigma) \le \sigma\tau$.

Let X be a Banach space with a monotone FDD $(E_n)_n$.

- a) If X is strongly AUS w.r.t. $(E_n)_n$ then $(E_n)_n$ is shrinking.
- b) If X is strongly AUC w.r.t. $(E_n)_n$ then $(E_n)_n$ is boundedly complete.

Thus, X is reflexive whenever it is strongly AUS and strongly AUC w.r.t. the same FDD.

Girardi proved in 2001 that JT_* is AUC. Since JT_* is not isomorphic to a dual space, it does not admit a boundedly complete FDD. Thus JT_* is not a strongly AUC space.

Let X be a Banach space with a monotone shrinking FDD and 0 $<\sigma,\tau<$ 1. Then

- a) If $\overline{s\rho}_X(\sigma) < \sigma\tau$, then $\overline{s\delta}_{X^*}(3\tau) \ge \sigma\tau$.
- b) If $\overline{s\delta}_{X^*}(\tau) > \sigma\tau$, then $\overline{s\rho}_X(\sigma) \le \sigma\tau$.

Thus, X is strongly AUS with power type p if and only if X^* is strongly AUC with power type p', the conjugate exponent of p.

Let X, Y be Banach spaces admitting monotone FDDs. Then

$$\overline{
ho}_{X\otimes_arepsilon Y}(t) \leq (1+\overline{s
ho}_X(4t))(1+\overline{s
ho}_Y(4t))-1$$

for every 0 < t < 1/4.

EL OQO

Let X, Y be Banach spaces admitting monotone FDDs. Then

$$\overline{
ho}_{oldsymbol{X}\otimes_arepsilonoldsymbol{Y}}(t)\leq (1+\overline{s
ho}_{oldsymbol{X}}(4t))(1+\overline{s
ho}_{oldsymbol{Y}}(4t))-1$$

for every 0 < t < 1/4.

Assume X is strongly AUS with power type p and Y is strongly AUS with power type q. Then X ⊗_ε Y is AUS with power type min{p, q}.

Let X, Y be Banach spaces admitting monotone FDDs. Then

$$\overline{
ho}_{X\otimes_arepsilon Y}(t) \leq (1+\overline{s
ho}_X(4t))(1+\overline{s
ho}_Y(4t))-1$$

for every 0 < t < 1/4.

Assume X is strongly AUS with power type p and Y is strongly AUS with power type q. Then X ⊗_ε Y is AUS with power type min{p, q}. If moreover Y* is separable then N(X, Y*) is weak* AUC with power type max{p', q'}. By a result of Van Dulst and Sims, it follows that N(X, Y*) has the weak* fixed point property.

伺 ト イヨト イヨト ヨヨ のくら

Let X, Y be Banach spaces admitting monotone FDDs. Then

$$\overline{
ho}_{X\otimes_arepsilon Y}(t) \leq (1+\overline{s
ho}_X(4t))(1+\overline{s
ho}_Y(4t))-1$$

for every 0 < t < 1/4.

- Assume X is strongly AUS with power type p and Y is strongly AUS with power type q. Then X ⊗_ε Y is AUS with power type min{p, q}. If moreover Y* is separable then N(X, Y*) is weak* AUC with power type max{p', q'}. By a result of Van Dulst and Sims, it follows that N(X, Y*) has the weak* fixed point property.
- Assume that X is strongly AUC with power type p w.r.t. an shrinking FDD, and Y is strongly AUS with power type q. Then K(X, Y) is AUS with power type min{p', q}.

Table of Contents

Strongly AUC and strongly AUS spaces

3 Application to Orlicz spaces

= 200

Orlicz spaces

An Orlicz function is a continuous convex function M defined on \mathbb{R}^+ such that M(0) = 0 and $\lim_{t\to\infty} M(t) = +\infty$.

EL OQO

Orlicz spaces

An Orlicz function is a continuous convex function M defined on \mathbb{R}^+ such that M(0) = 0 and $\lim_{t\to\infty} M(t) = +\infty$. To any Orlicz function M we associate the space

$$h_M = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : \sum_{n=1}^{\infty} M(|x_n|/\rho) < +\infty \text{ for some } \rho > 0\}$$

endowed with the Luxemburg norm

$$||x||_{M} = \inf\{\rho > 0 : \sum_{n=1}^{\infty} M(|x_{n}|/\rho) \le 1\}$$

Orlicz spaces

An Orlicz function is a continuous convex function M defined on \mathbb{R}^+ such that M(0) = 0 and $\lim_{t\to\infty} M(t) = +\infty$. To any Orlicz function M we associate the space

$$h_M = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : \sum_{n=1}^{\infty} M(|x_n|/\rho) < +\infty \text{ for some } \rho > 0\}$$

endowed with the Luxemburg norm

$$||x||_{M} = \inf\{\rho > 0 : \sum_{n=1}^{\infty} M(|x_{n}|/\rho) \le 1\}$$

The Boyd indices of an Orlicz function M are defined as follows:

$$\alpha_M = \sup\{q : \sup_{0 < u, v \le 1} \frac{M(uv)}{u^q M(v)} < +\infty\}$$

$$\beta_M = \inf\{q : \inf_{0 < u, v \le 1} \frac{M(uv)}{u^q M(v)} > 0\}$$

AUS and AUC Orlicz spaces

Theorem (Gonzalo–Jaramillo–Troyanski, 2007)

 h_M is AUS if $\alpha_M > 1$. Moreover, α_M is the supremum of the numbers $\alpha > 1$ such that the modulus of asymptotic smoothness of h_M is of power type α .

5 1 SQC

AUS and AUC Orlicz spaces

Theorem (Gonzalo–Jaramillo–Troyanski, 2007)

 h_M is AUS if $\alpha_M > 1$. Moreover, α_M is the supremum of the numbers $\alpha > 1$ such that the modulus of asymptotic smoothness of h_M is of power type α .

Theorem (Borel-Mathurin, 2010)

 h_M is AUC if $\beta_M < \infty$, and β_M is the infimum of the numbers $\beta > 0$ such that its modulus of asymptotic convexity is of power type β .

AUS and AUC Orlicz spaces

Theorem (Gonzalo–Jaramillo–Troyanski, 2007)

 h_M is AUS if $\alpha_M > 1$. Moreover, α_M is the supremum of the numbers $\alpha > 1$ such that the modulus of asymptotic smoothness of h_M is of power type α .

Theorem (Borel-Mathurin, 2010)

 h_M is AUC if $\beta_M < \infty$, and β_M is the infimum of the numbers $\beta > 0$ such that its modulus of asymptotic convexity is of power type β .

Moreover, their proofs show that h_M is strongly AUS (resp. strongly AUC) whenever it is AUS (resp. AUC).

伺 ト イヨト イヨト ヨヨ のくら

Compact operators on Orlicz spaces

Let M, N be Orlicz functions. The space $\mathcal{K}(h_M, h_N)$ is AUS if and only if $\alpha_M, \alpha_N > 1$ and $\beta_M < +\infty$.

Compact operators on Orlicz spaces

Let M, N be Orlicz functions. The space $\mathcal{K}(h_M, h_N)$ is AUS if and only if $\alpha_M, \alpha_N > 1$ and $\beta_M < +\infty$. Moreover, min $\{\beta'_M, \alpha_N\}$ is the supremum of the numbers $\alpha > 0$ such that the modulus of asymptotic smoothness of $\mathcal{K}(h_M, h_N)$ is of power type α .

Let M, N be Orlicz functions. The space $\mathcal{K}(h_M, h_N)$ is AUS if and only if $\alpha_M, \alpha_N > 1$ and $\beta_M < +\infty$. Moreover, min $\{\beta'_M, \alpha_N\}$ is the supremum of the numbers $\alpha > 0$ such that the modulus of asymptotic smoothness of $\mathcal{K}(h_M, h_N)$ is of power type α .

Let M, N be Orlicz functions such that $\alpha_M, \alpha_N > 1$ and $\beta_N < \infty$. Then $\mathcal{N}(h_M, h_N^*)$ has the weak* fixed point property.

References

Borel-Mathurin, L. "Isomorphismes non linéaires entre espaces de Banach". PhD thesis. Université Paris 6, 2010.

Dilworth, S. J. et al. "Compactly uniformly convex spaces and property (β) of Rolewicz". In: J. Math. Anal. Appl. 402.1 (2013), pp. 297–307.

Dilworth, S. J. et al. "Equivalent norms with the property (β) of Rolewicz". In: ArXiv *e-prints* (June 2015). arXiv: 1506.07978 [math.FA].

Lennard, Chris. " C_1 is uniformly Kadec-Klee". In: Proc. Amer. Math. Soc. 109.1 (1990), pp. 71–77.

Thank you for your attention