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Asymptotic uniform smoothness

Consider a real Banach space X and let Sx be its unit sphere. For t > 0,
x € Sx we shall consider

px(t) = sup inf sup ||x +ty||—1
x(t) x€Sx dim(X/Y)<oco yes, | |
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Asymptotic uniform smoothness

Consider a real Banach space X and let Sx be its unit sphere. For t > 0,
x € Sx we shall consider

px(t)=sup  inf sup ||x +ty|| —1
x€Sx dim(X/Y)<o0 yes,

The space X is said to be asymptotically uniformly smooth (AUS for
short) if

lim t™ 1Py (t) = 0.
jmt px(t) =0

We say that X is AUS with power type p if px(t) < CtP for some C > 0.
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Spaces of compact operators

For which Banach spaces X and Y is the space of compact operators
K(X,Y) an AUS space?
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Spaces of compact operators

For which Banach spaces X and Y is the space of compact operators
K(X,Y) an AUS space? J

o (Lennard, 1990) (42, ¢2) is AUS with power type 2.
o (Besbes, 1992) If 1 < p < oo then K(£p, £y ) is AUS with power type
P
o (Dilworth—Kutzarova—Randrianarivony—Revalski—Zhivkov, 2013) If

1 < p,q < oo then K(4p,44) is AUS with power type min{p’, q}
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Spaces of compact operators

For which Banach spaces X and Y is the space of compact operators
K(X,Y) an AUS space? J

(Lennard, 1990) KC(¥2, £2) is AUS with power type 2.
(Besbes, 1992) If 1 < p < oo then K(£p, £y ) is AUS with power type
o

o (Dilworth—Kutzarova—Randrianarivony—Revalski—Zhivkov, 2013) If
1 < p,q < oo then K(4p,44) is AUS with power type min{p’, q}

Let X, Y be Banach spaces and assume that X* and Y have monotone
FDDs. If X is uniformly convex and Y is uniformly smooth then (X, Y)
is AUS. Moreover, if X is uniformly convex with power type p and Y is
uniformly smooth with power type g then IC(X, Y) is AUS with power
type min{p’, q}.
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Spaces of compact operators

For which Banach spaces X and Y is the space of compact operators
K(X,Y) an AUS space? J

(Lennard, 1990) KC(¥2, £2) is AUS with power type 2.
(Besbes, 1992) If 1 < p < oo then K(£p, £y ) is AUS with power type
o

o (Dilworth—Kutzarova—Randrianarivony—Revalski—Zhivkov, 2013) If
1 < p,q < oo then K(4p,44) is AUS with power type min{p’, q}

Let X, Y be Banach spaces and assume that X* and Y have monotone
FDDs. If X is uniformly convex and Y is uniformly smooth then (X, Y)
is AUS. Moreover, if X is uniformly convex with power type p and Y is
uniformly smooth with power type g then IC(X, Y) is AUS with power

type min{p’, q}.

Recall that, under suitable assumptions, K(X, Y) is isometric to the
injective tensor product (X*®:Y, || [|¢)
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Strongly AUS spaces

A sequence (E,), of finite dimensional subspaces of X is call an FDD if

every x € X has a unique representation of the form x = 77| x,, with
xp € E,, for every n.
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Strongly AUS spaces

A sequence (E,), of finite dimensional subspaces of X is call an FDD if

every x € X has a unique representation of the form x = 77| x,, with
xp € E,, for every n.

Assume that there is a shrinking FDD (E,), of X. For each t > 0 we have:

px(t) = igg*@fﬂSUp{HX%— tyl| —1:x € ®1ENSx,y € ®X, 1 EiNSx}.
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Strongly AUS spaces

A sequence (E,), of finite dimensional subspaces of X is call an FDD if
every x € X has a unique representation of the form x = 77| x,, with
xn € E, for every n.

Assume that there is a shrinking FDD (E,), of X. For each t > 0 we have:

px(t) = igl;\)]ni%fnsup{Hx +tyl —1:x € ®L1ENSx,y € 02, . 1E N Sx}.

v

Definition

Let X a Banach space and let E = (E,), be an FDD for X. The space X
is said to be strongly AUS with respect to E if

pe(t) = sup inf sup{|[x +ty] —1:x € @, ENSx,y € ®X, . ENSx}
neN m2n

satisfies lim; .o t~1pg(t) = 0. We say that X is strongly AUS if X is
strongly AUS with respect to some FDD.

v
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Some examples

a) Let X = (@2 En)p be an £p-sum of finite dimensional spaces,

1 < p < o0, and consider E = (E,)2;. Then pg(t) = (1+tP)Y/P —1.
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b) Let X = (21 En)o be a co-sum of finite dimensional spaces, and
E = (En)S2;. Then pg(t) =0 for each t € (0, 1].

L.C. Garcia-Lirola (Universidad de Murcia) AUS in spaces of compact operators July, 2017 5/ 10



Some examples

a) Let X = (@2 En)p be an £p-sum of finite dimensional spaces,
1 < p < o0, and consider E = (E,)2;. Then pg(t) = (1+tP)Y/P —1.

b) Let X = (D72 En)o be a co-sum of finite dimensional spaces, and
E = (En)S2,. Then pg(t) =0 for each t € (0,1].

c) The James space J with the norm

m

HGa)all? = sup D (s = x0)” + 20 )

<m<...<mmi1 ;7

given by Prus is strongly AUS and pg(t) < (14 2t2)Y/2 — 1.
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Some examples

a) Let X = (@2 En)p be an £p-sum of finite dimensional spaces,
1 < p < o0, and consider E = (E,)2;. Then pg(t) = (1+tP)Y/P —1.

b) Let X = (D72 En)o be a co-sum of finite dimensional spaces, and
E = (En)S2,. Then pg(t) =0 for each t € (0,1].
c) The James space J with the norm

m

HGa)all? = sup D (s = x0)” + 20 )

<m<...<mmi1 ;7

given by Prus is strongly AUS and pg(t) < (14 2t2)Y/2 — 1.

e) Every uniformly smooth space with a monotone FDD is strongly AUS.
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AUS tensor products

Let E,F be FDDs on Banach spaces X and Y/, respectively. Then there
exists a constant K > 0 such that

Pxa,v(8) < (1+ pe(KO)(L + pr(Ke) — 1

for every 0 < t < 1/K.
In particular, if X is strongly AUS with power type p and Y is strongly
AUS with power type g. Then X&.Y is AUS with power type min{p, q}
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Let E,F be FDDs on Banach spaces X and Y/, respectively. Then there
exists a constant K > 0 such that

Pxa,v(8) < (1+ pe(KO)(L + pr(Ke) — 1

for every 0 < t < 1/K.

In particular, if X is strongly AUS with power type p and Y is strongly
AUS with power type g. Then X&.Y is AUS with power type min{p, q}
and NV (X, Y*) is weak* AUC with power type max{p’, ¢’} and has the
weak* fixed point property.
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AUS tensor products

Let E,F be FDDs on Banach spaces X and Y/, respectively. Then there
exists a constant K > 0 such that

Pxa,v(8) < (1+ pe(KO)(L + pr(Ke) — 1

for every 0 < t < 1/K.

In particular, if X is strongly AUS with power type p and Y is strongly
AUS with power type g. Then X&.Y is AUS with power type min{p, q}
and NV (X, Y*) is weak* AUC with power type max{p’, ¢’} and has the
weak* fixed point property.

Moreover, if X* is strongly AUS with power type p and Y is strongly AUS
with power type g, then (X, Y) is AUS with power type min{p, q}.
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Some negative results

Remark that, for the natural norm, not much can be expected. Indeed,
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Remark that, for the natural norm, not much can be expected. Indeed,

o Ruess and Stegall showed that neither the norm of X®.Y or the
norm of IC(X, Y) are smooth whenever the dimension of X and Y are
greater or equal than 2.
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AUC. Indeed, />®.f> contains a subspace isometric to ¢y and so it is
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@ the injective tensor product of strongly AUC spaces need not to be

AUC. Indeed, (>®.¢> contains a subspace isometric to ¢y and so it is
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e Dilworth and Kutzarova proved that L(¢p, {q) is not strictly convex
for1 < p<g< .
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Some negative results

Remark that, for the natural norm, not much can be expected. Indeed,

@ Ruess and Stegall showed that neither the norm of X&.Y or the
norm of (X, Y') are smooth whenever the dimension of X and Y are
greater or equal than 2.

@ the injective tensor product of strongly AUC spaces need not to be

AUC. Indeed, (>®.¢> contains a subspace isometric to ¢y and so it is
not AUC.

e Dilworth and Kutzarova proved that L(¢p, ¢4) is not strictly convex
for1 < p<g< .

We have obtained the following:

Let X, Y be Banach spaces with dimension greater or equal than 2. Then
K(X,Y) and X®.Y are not strictly convex. J
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Orlicz spaces

An Orlicz function is a continuous convex function M defined on R such
that M(0) = 0 and lim¢_oc M(t) = +00.
To any Orlicz function M we associate the space

[e.e]
hy = {(xn) € RY Z M(|xn|/p) < 400 for some p > 0}
n=1

endowed with the Luxemburg norm

xll = inf{p > 0: > M(xal/p) < 1}

n=1
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Orlicz spaces

An Orlicz function is a continuous convex function M defined on R such
that M(0) = 0 and lim¢_oc M(t) = +00.

To any Orlicz function M we associate the space

[o¢]
hv = {(xn) € RV : Z M(|xn|/p) < 400 for some p > 0}
n=1

endowed with the Luxemburg norm

xlln = inf{p > 0: 3" M(lxal/p) < 1}
n=1

The Boyd indices of an Orlicz function M are defined as follows:

ap =sup{q: sup M(uv) < +oo}
0<u,v<1 qu(V)

. o M(uv)
Pm = inf{g: 0<Iur,]\f§1 uIM(v) 0}

L.C. Garcia-Lirola (Universidad de Murcia)
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Compact operators on Orlicz spaces

Theorem (Gonzalo—Jaramillo—Troyanski, 2007)

hp is AUS if apy > 1. Moreover, iy is the supremum of the numbers
a > 1 such that the modulus of asymptotic smoothness of hy, is of power

type o.

Borel-Mathurin (2010) proved an analogous statement relating 3y and
the property of hyy being AUC. Moreover, their proofs show that hy is
strongly AUS (resp. strongly AUC) whenever it is AUS (resp. AUC).
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Theorem (Gonzalo—Jaramillo—Troyanski, 2007)

hp is AUS if apy > 1. Moreover, iy is the supremum of the numbers
a > 1 such that the modulus of asymptotic smoothness of hy, is of power

type o.

Borel-Mathurin (2010) proved an analogous statement relating 3y and
the property of hyy being AUC. Moreover, their proofs show that hy is
strongly AUS (resp. strongly AUC) whenever it is AUS (resp. AUC).

The space K(hp, hy) is AUS if and only if ap, any > 1 and By < +o0.
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Compact operators on Orlicz spaces

Theorem (Gonzalo—Jaramillo—Troyanski, 2007)

hp is AUS if apy > 1. Moreover, iy is the supremum of the numbers
a > 1 such that the modulus of asymptotic smoothness of hy, is of power

type o.

Borel-Mathurin (2010) proved an analogous statement relating 3y and
the property of hyy being AUC. Moreover, their proofs show that hy is
strongly AUS (resp. strongly AUC) whenever it is AUS (resp. AUC).

The space K(hp, hy) is AUS if and only if ap, any > 1 and By < +o0.
Moreover, min{f3},, an} is the supremum of the numbers o > 0 such that
the modulus of asymptotic smoothness of IC(hp, hy) is of power type a.
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Compact operators on Orlicz spaces

Theorem (Gonzalo—Jaramillo—Troyanski, 2007)

hp is AUS if apy > 1. Moreover, iy is the supremum of the numbers
a > 1 such that the modulus of asymptotic smoothness of hy, is of power

type o.

Borel-Mathurin (2010) proved an analogous statement relating 3y and
the property of hyy being AUC. Moreover, their proofs show that hy is
strongly AUS (resp. strongly AUC) whenever it is AUS (resp. AUC).

The space K(hp, hy) is AUS if and only if ap, any > 1 and By < +o0.
Moreover, min{f3},, an} is the supremum of the numbers o > 0 such that
the modulus of asymptotic smoothness of IC(hp, hy) is of power type a.

Assume ap, ay > 1 and By < co. Then the space NV (hy, hy) has the
weak* fixed point property.
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