Extremal structure of Lipschitz free spaces

Luis C. García-Lirola

Joint work with Colin Petitjean, Antonin Procházka and Abraham Rueda Zoca

Universidad de Murcia

Conference on Non Linear Functional Analysis October, 2017

Research partially supported by

< □ > < @ > < 注 > < 注 > ... 注

- García-Lirola, L., A. Procházka, and A. Rueda Zoca. "A characterisation of the Daugavet property in spaces of Lipschitz functions". arXiv:1705.05145. 2017.
- García-Lirola, L., C. Petitjean, A. Procházka, and A. Rueda Zoca. "Extremal structure and Duality in Lipschitz free spaces". arXiv:1707.09307. 2017.

Spaces of Lipschitz functions and Lipschitz free spaces

 Given a complete metric space (M, d) and a distinguished point 0 ∈ M, the space

$$\operatorname{Lip}_{0}(M) := \{f \colon M \to \mathbb{R} : f \text{ is Lipschitz}, f(0) = 0\}$$

is a dual Banach space when equipped with the norm

$$||f||_L := \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)} : x \neq y \right\}.$$

• The canonical predual of Lip₀(M) is the Lipschitz free space $\mathcal{F}(M) = \overline{\text{span}} \{ \delta_x : x \in M \}$, where $\langle f, \delta_x \rangle = f(x)$.

Spaces of Lipschitz functions and Lipschitz free spaces

 Given a complete metric space (M, d) and a distinguished point 0 ∈ M, the space

$$\operatorname{Lip}_{0}(M) := \{f \colon M \to \mathbb{R} : f \text{ is Lipschitz}, f(0) = 0\}$$

is a dual Banach space when equipped with the norm

$$||f||_L := \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)} : x \neq y \right\}.$$

- The canonical predual of $\operatorname{Lip}_0(M)$ is the Lipschitz free space $\mathcal{F}(M) = \overline{\operatorname{span}} \{ \delta_x : x \in M \}$, where $\langle f, \delta_x \rangle = f(x)$.
- The elements of the form

$$\frac{\delta_x - \delta_y}{d(x, y)}, \ x, y \in M, x \neq y$$

are called molecules. Note that

$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}} \left\{ \frac{\delta_x - \delta_y}{d(x, y)} : x, y \in M \right\}$$

Distinguished subsets of B_X

Let X be a Banach space and $x \in B_X$.

• x is an extreme point if $x = \frac{y+z}{2}$, $y, z \in B_X$, implies x = y = z.

• x is an **exposed point** if there is $f \in X^*$ such that

f(x) > f(y) for all $y \in B_X \setminus \{x\}$.

Distinguished subsets of B_X

Let X be a Banach space and $x \in B_X$.

• x is an extreme point if $x = \frac{y+z}{2}$, $y, z \in B_X$, implies x = y = z.

• x is an **exposed point** if there is $f \in X^*$ such that

$$f(x) > f(y)$$
 for all $y \in B_X \setminus \{x\}$.

- x is a **preserved extreme point** if it is an extreme point of $B_{X^{**}}$. Equivalently, the slices of B_X containing x are a neighbourhood basis for x in the weak topology.
- x is a **denting point** if the slices of B_X containing x are a neighbourhood basis for x in the norm topology.

Distinguished subsets of B_X

Let X be a Banach space and $x \in B_X$.

• x is an extreme point if $x = \frac{y+z}{2}$, $y, z \in B_X$, implies x = y = z.

• x is an **exposed point** if there is $f \in X^*$ such that

f(x) > f(y) for all $y \in B_X \setminus \{x\}$.

- x is a **preserved extreme point** if it is an extreme point of $B_{X^{**}}$. Equivalently, the slices of B_X containing x are a neighbourhood basis for x in the weak topology.
- x is a **denting point** if the slices of B_X containing x are a neighbourhood basis for x in the norm topology.
- *x* is a weak-strongly exposed point if there is *f* ∈ *X*^{*} providing slices that form a neighbourhood basis for *x* in the weak topology.
- x is a strongly exposed point if there is f ∈ X* providing slices that form a neighbourhood basis for x in the norm topology.

Extremal structure of $B_{\mathcal{F}(M)}$ and molecules

Theorem (Weaver, 1995)

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is a molecule.

We do not know if every extreme point of $B_{\mathcal{F}(M)}$ is a molecule. We have shown that this is the case whenever $\mathcal{F}(M)$ has a predual with additional properties.

Extremal structure of $B_{\mathcal{F}(M)}$ and molecules

Theorem (Weaver, 1995)

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is a molecule.

We do not know if every extreme point of $B_{\mathcal{F}(M)}$ is a molecule. We have shown that this is the case whenever $\mathcal{F}(M)$ has a predual with additional properties.

Definition

Let
$$f \in S_{\text{Lip}_0(M)}$$
. We say that f is **peaking at** (x, y) if

$$\frac{f(x) - f(y)}{d(x, y)} = 1 \text{ and } \lim_{n \to \infty} \frac{f(u_n) - f(v_n)}{d(u_n, v_n)} = 1 \Rightarrow u_n \to x, v_n \to y$$

Theorem (Weaver, 1999)

Assume that there is a Lipschitz function f peaking at (x, y). Then $\frac{\delta_x - \delta_y}{d(x, y)}$ is a preserved extreme point.

Strongly exposed points in $B_{\mathcal{F}(M)}$

Let $x, y \in M$, $x \neq y$. The following are equivalent. (i) The molecule $\frac{\delta_x - \delta_y}{d(x,y)}$ is a strongly exposed point of $B_{\mathcal{F}(M)}$. (ii) There is $f \in \text{Lip}_0(M)$ peaking at (x, y). (iii) There is $\varepsilon > 0$ such that for every $z \in M \setminus \{x, y\}$,

$d(x,z) + d(y,z) > d(x,y) + \varepsilon \min\{d(x,z), d(y,z)\}$

This result extends a characterisation of peaking functions in subsets of \mathbb{R} -trees due to by Dalet, Kaufmann and Procházka (2016). The proof relies on ideas coming from Dalet–Kaufmann–Procházka characterisation and a paper by Ivakno, Kadets and Werner (2007).

Strongly exposed points in $B_{\mathcal{F}(M)}$

Let $x, y \in M$, $x \neq y$. The following are equivalent. (i) The molecule $\frac{\delta_x - \delta_y}{d(x,y)}$ is a strongly exposed point of $B_{\mathcal{F}(M)}$. (ii) There is $f \in \operatorname{Lip}_0(M)$ peaking at (x, y). (iii) There is $\varepsilon > 0$ such that for every $z \in M \setminus \{x, y\}$,

$d(x,z) + d(y,z) > d(x,y) + \varepsilon \min\{d(x,z), d(y,z)\}$

This result extends a characterisation of peaking functions in subsets of \mathbb{R} -trees due to by Dalet, Kaufmann and Procházka (2016). The proof relies on ideas coming from Dalet–Kaufmann–Procházka characterisation and a paper by Ivakno, Kadets and Werner (2007).

Corollary

Let *M* be a **compact** metric space. Then $Lip_0(M)$ has the Daugavet property if and only if $B_{\mathcal{F}(M)}$ does not have any strongly exposed point.

(日) (同) (三) (三)

Very recently, Aliaga and Guirao have characterised preserved extreme points of $B_{\mathcal{F}(M)}$. Their result says that $\frac{\delta_x - \delta_y}{d(x,y)}$ is a preserved extreme point if and only if for every $\varepsilon > 0$ there is $\delta > 0$ such that for every $z \in M \setminus \{x, y\}$,

$$(1-\delta)(d(x,z)+d(z,y)) < d(x,y) \Rightarrow \min\{d(x,z),d(y,z)\} < \varepsilon.$$

This solves a problem posed by Weaver and implies that if M is compact then every molecule which is an extreme point of $B_{\mathcal{F}(M)}$ is also a preserved extreme point.

Our next goal is to study the relationship between the different notions of extreme and exposed points for $B_{\mathcal{F}(M)}$. We need the following easy lemma.

Lemma

Assume
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$. Then $x_{\alpha} \to x$ and $y_{\alpha} \to y$.
Therefore $\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$ converges in norm to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$.

Our next goal is to study the relationship between the different notions of extreme and exposed points for $B_{\mathcal{F}(M)}$. We need the following easy lemma.

Lemma

Assume
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$. Then $x_{\alpha} \to x$ and $y_{\alpha} \to y$.
Therefore $\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$ converges in norm to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$.

Proof.

Test the weak convergence against the function

$$f(t) = \max\{\varepsilon - d(x, t), 0\}$$

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is a denting point.

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is a denting point.

Proof.

Denote V the set of molecules and let $\mu \in V$ be a preserved extreme point. Assume there is $\varepsilon > 0$ such that every slice of $B_{\mathcal{F}(M)}$ containing μ has diameter at least ε .

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is a denting point.

Proof.

Denote V the set of molecules and let $\mu \in V$ be a preserved extreme point. Assume there is $\varepsilon > 0$ such that every slice of $B_{\mathcal{F}(M)}$ containing μ has diameter at least ε .

There must be a slice S of $B_{\mathcal{F}(M)}$ such that $\operatorname{diam}(V \cap S) < \varepsilon/2$.

Otherwise, there would be a net $\{\mu_{\alpha}\}$ of molecules that converges weakly to μ but not in norm, a contradiction.

Proof.

Denote V the set of molecules and let $\mu \in V$ be a preserved extreme point. Assume there is $\varepsilon > 0$ such that every slice of $B_{\mathcal{F}(M)}$ containing μ has diameter at least ε .

There must be a slice S of $B_{\mathcal{F}(M)}$ such that $\operatorname{diam}(V \cap S) < \varepsilon/2$. Otherwise, there would be a net $\{\mu_{\alpha}\}$ of molecules that converges weakly to μ but not in norm, a contradiction. Note that

$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}(V) = \overline{\operatorname{conv}}(\overline{\operatorname{conv}}(V \cap S) \cup \overline{\operatorname{conv}}(V \setminus S))$$

Now, a variation of Asplund–Bourgain–Namioka superlemma provides a slice of $B_{\mathcal{F}(M)}$ containing μ of diameter less than ε , a contradiction.

Example

There is a compact countable metric space M with a denting point of $B_{\mathcal{F}(M)}$ which is not strongly exposed.

Example

There is a compact countable metric space M with a denting point of $B_{\mathcal{F}(M)}$ which is not strongly exposed.

However, we have shown that if M is uniformly discrete then every preserved extreme point of $B_{\mathcal{F}(M)}$ is a strongly exposed point.

Example

There is a compact countable metric space M with a denting point of $B_{\mathcal{F}(M)}$ which is not strongly exposed.

However, we have shown that if M is uniformly discrete then every preserved extreme point of $B_{\mathcal{F}(M)}$ is a strongly exposed point.

Example

Consider the sequence in c_0 given by $x_0 = 0, x_1 = 2e_1$, and $x_n = e_1 + (1 + 1/n)e_n$ for $n \ge 2$. Let $M = \{0\} \cup \{x_n : n \in \mathbb{N}\}$. Aliaga and Guirao showed that the molecule $\frac{\delta(x_1)}{2}$ is not a preserved extreme point of $B_{\mathcal{F}(M)}$. However, we have shown that it is an extreme point.

Every weak-strongly exposed point of $B_{\mathcal{F}(M)}$ is a strongly exposed point.

3

Every weak-strongly exposed point of $B_{\mathcal{F}(M)}$ is a strongly exposed point.

Corollary

The norm of $Lip_0(M)$ is Gâteaux differentiable at f if and only if it is Fréchet differentiable at f.

Corollary

Let *M* be a **compact** metric space. The following assertions are equivalent:

- (i) *M* is geodesic, that is, for every pair of points in *M* there is a geodesic joining them.
- (ii) For every $x, y \in M$ there is $z \in M \setminus \{x, y\}$ such that d(x, y) = d(x, z) + d(z, y).
- (iii) $Lip_0(M)$ has the Daugavet property.
- (iv) The unit ball of $\mathcal{F}(M)$ does not have any preserved extreme point.
- (v) The unit ball of $\mathcal{F}(M)$ does not have any strongly exposed point.
- (vi) The norm of $Lip_0(M)$ does not have any point of Gâteaux differentiability.
- (vii) The norm of $Lip_0(M)$ does not have any point of Fréchet differentiability.

- 4 @ ▶ 4 @ ▶ 4 @ ▶

Corollary

Let *M* be a **compact** metric space. The following assertions are equivalent:

- (i) *M* is geodesic, that is, for every pair of points in *M* there is a geodesic joining them.
- (ii) For every $x, y \in M$ there is $z \in M \setminus \{x, y\}$ such that d(x, y) = d(x, z) + d(z, y).
- (iii) $Lip_0(M)$ has the Daugavet property.
- (iv) The unit ball of $\mathcal{F}(M)$ does not have any preserved extreme point.
- (v) The unit ball of $\mathcal{F}(M)$ does not have any strongly exposed point.
- (vi) The norm of $Lip_0(M)$ does not have any point of Gâteaux differentiability.
- (vii) The norm of $Lip_0(M)$ does not have any point of Fréchet differentiability.

Thank you for your attention