Maps with the Radon-Nikodým property

Luis C. García-Lirola

Joint work with Matías Raja

Universidad de Murcia

January, 2017 45th Winter School in Abstract Analysis

Research partially supported by

비로 (로) (로) (로) (묘) (리)

Outline

Properties of dentable maps

-

The Radon-Nikodým property

Let X be a Banach space, $C \subset X$ be convex and closed. Let \mathbb{H} be the set of all the open half-spaces of a Banach space X.

= nac

The Radon-Nikodým property

Let X be a Banach space, $C \subset X$ be convex and closed. Let \mathbb{H} be the set of all the open half-spaces of a Banach space X.

Definition

C has the **Radon-Nikodým property** if for every bounded subset *A* of *C* and every $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $A \cap H \neq \emptyset$ and $\operatorname{diam}(A \cap H) < \varepsilon$.

Let M be a metric space.

Definition

A map $f: C \to M$ is said to be **dentable** if for every nonempty bounded set $A \subset C$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $A \cap H \neq \emptyset$ and $\operatorname{diam}(f(A \cap H)) < \varepsilon$.

ELE NOR

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Let M be a metric space.

Definition

A map $f: C \to M$ is said to be **dentable** if for every nonempty bounded set $A \subset C$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $A \cap H \neq \emptyset$ and $\operatorname{diam}(f(A \cap H)) < \varepsilon$.

• C has the RNP if and only if the identity $\mathbb{I}: C \to C$ is dentable.

ELE SQC

Let M be a metric space.

Definition

A map $f: C \to M$ is said to be **dentable** if for every nonempty bounded set $A \subset C$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $A \cap H \neq \emptyset$ and $\operatorname{diam}(f(A \cap H)) < \varepsilon$.

- C has the RNP if and only if the identity $\mathbb{I}: C \to C$ is dentable.
- The RNP was extended to linear operators by Reĭnov (1975) and Linde (1976). In 1977 Reĭnov characterised RN-operators as those bounded operators *T* : *X* → *Y* satisfying that for every nonempty bounded set *A* ⊂ *X* and every ε > 0 there exists *x* ∈ *A* such that *x* ∉ conv(*A* \ *T*⁻¹(*B*_Y(*T*(*x*), ε)).

A = A = A = A = A = A = A

Let M be a metric space.

Definition

A map $f: C \to M$ is said to be **dentable** if for every nonempty bounded set $A \subset C$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $A \cap H \neq \emptyset$ and $\operatorname{diam}(f(A \cap H)) < \varepsilon$.

- C has the RNP if and only if the identity $I: C \rightarrow C$ is dentable.
- The RNP was extended to linear operators by Reĭnov (1975) and Linde (1976). In 1977 Reĭnov characterised RN-operators as those bounded operators T: X → Y satisfying that for every nonempty bounded set A ⊂ X and every ε > 0 there exists x ∈ A such that x ∉ conv(A \ T⁻¹(B_Y(T(x), ε)). Therefore, T is an RN operator if and only if T is dentable.

(4回) (三) (三) (三) (三) (○) (○)

Let M be a metric space.

Definition

A map $f: C \to M$ is said to be **dentable** if for every nonempty bounded set $A \subset C$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $A \cap H \neq \emptyset$ and $\operatorname{diam}(f(A \cap H)) < \varepsilon$.

- C has the RNP if and only if the identity $\mathbb{I}: C \to C$ is dentable.
- The RNP was extended to linear operators by Reĭnov (1975) and Linde (1976). In 1977 Reĭnov characterised RN-operators as those bounded operators T: X → Y satisfying that for every nonempty bounded set A ⊂ X and every ε > 0 there exists x ∈ A such that x ∉ conv(A \ T⁻¹(B_Y(T(x), ε)). Therefore, T is an RN operator if and only if T is dentable.
- If $M = \mathbb{R}$, then every bounded above lower semicontinuous convex function defined on C is dentable.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

Outline

2 Properties of dentable maps

-

Dentable maps and dentable sets

Let $C \subset X$ be a closed convex set. Then the following are equivalent:

- (i) the set C has the RNP;
- (ii) for every metric space (M, d), every continuous map $f: C \to M$ is dentable;
- (iii) every Lipschitz function $f: C \to \mathbb{R}$ is dentable.

The proof is based on a result by García-Castaño, Oncina, Orihuela and Troyanski (2004).

The space of dentable maps

We denote by

 $\mathcal{D}_U(C, M)$ the set of dentable maps from C to M which are uniformly continuous on bounded subsets of C.

If *M* is a vector space, then $\mathcal{D}_U(C, M)$ is a vector space. Assume moreover that *C* is bounded. Then:

- (a) if M is a complete metric space, then $\mathcal{D}_U(C, M)$ is complete for the metric of uniform convergence on C;
- (b) if M is a Banach space, then $\mathcal{D}_U(C, M)$ is a Banach space;
- (c) if M is a Banach algebra (resp. lattice), then $\mathcal{D}_U(C, M)$ is a Banach algebra (resp. lattice).

A = A = A = A = A = A = A

The space of dentable maps

Given a bounded subset A of C, $x^* \in X^*$ and t > 0, we denote

$$S(A, x^*, t) = \{x \in A : x^*(x) > \sup\{x^*, A\} - t\},\$$

The space of dentable maps

Given a bounded subset A of C, $x^* \in X^*$ and t > 0, we denote

$$S(A, x^*, t) = \{x \in A : x^*(x) > \sup\{x^*, A\} - t\},\$$

Definition

We say that x^* is *f*-strongly slicing on $A \subset C$ if $\lim_{t\to 0^+} \operatorname{diam}(f(S(A, x^*, t))) = 0.$

Let $f \in \mathcal{D}_U(C, M)$ and $A \subset C$ be a bounded subset. The set of *f*-strongly slicing functionals on *A* is a \mathcal{G}_{δ} dense in X^* .

Given C bounded, $f_1, \ldots, f_n \in \mathcal{D}_U(C, M)$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $C \cap H \neq \emptyset$ and max $\{ \operatorname{diam}(f_1(C \cap H)), \ldots, \operatorname{diam}(f_n(C \cap H)) \} < \varepsilon$.

ELE SOC

Given C bounded, $f_1, \ldots, f_n \in \mathcal{D}_U(C, M)$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $C \cap H \neq \emptyset$ and max $\{ \operatorname{diam}(f_1(C \cap H)), \ldots, \operatorname{diam}(f_n(C \cap H)) \} < \varepsilon$.

The following corollary was observed by Bourgain.

Given C bounded and $x_1^*, \ldots, x_n^* \in X^*$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $C \cap H \neq \emptyset$ and $\max\{\operatorname{diam}(x_1^*(C \cap H)), \ldots, \operatorname{diam}(x_n^*(C \cap H))\} < \varepsilon$.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given C bounded, $f_1, \ldots, f_n \in \mathcal{D}_U(C, M)$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $C \cap H \neq \emptyset$ and max $\{ \operatorname{diam}(f_1(C \cap H)), \ldots, \operatorname{diam}(f_n(C \cap H)) \} < \varepsilon$.

The following corollary was observed by Bourgain.

Given C bounded and $x_1^*, \ldots, x_n^* \in X^*$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $C \cap H \neq \emptyset$ and $\max\{\operatorname{diam}(x_1^*(C \cap H)), \ldots, \operatorname{diam}(x_n^*(C \cap H))\} < \varepsilon$.

Assume that $f_1, \ldots, f_n \in \mathcal{D}_U(C, M)$ and $f : C \to M$ is a continuous map such that $f(x) \in \{f_1(x), \ldots, f_n(x)\}$ for every $x \in C$. Then $f \in \mathcal{D}_U(C, M)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given C bounded, $f_1, \ldots, f_n \in \mathcal{D}_U(C, M)$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $C \cap H \neq \emptyset$ and max $\{ \operatorname{diam}(f_1(C \cap H)), \ldots, \operatorname{diam}(f_n(C \cap H)) \} < \varepsilon$.

The following corollary was observed by Bourgain.

Given C bounded and $x_1^*, \ldots, x_n^* \in X^*$ and $\varepsilon > 0$, there is $H \in \mathbb{H}$ such that $C \cap H \neq \emptyset$ and $\max\{\operatorname{diam}(x_1^*(C \cap H)), \ldots, \operatorname{diam}(x_n^*(C \cap H))\} < \varepsilon$.

Assume that $f_1, \ldots, f_n \in \mathcal{D}_U(C, M)$ and $f : C \to M$ is a continuous map such that $f(x) \in \{f_1(x), \ldots, f_n(x)\}$ for every $x \in C$. Then $f \in \mathcal{D}_U(C, M)$.

Assume that $f: C \to \mathbb{R}$ is uniformly continuous on bounded sets. Then f is dentable if and only if |f| is dentable.

The above result fails when the modulus is replaced by the norm for dentable maps.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We have also considered the dentability of the identity map $I: (C, \|\cdot\|) \to (C, d)$ where d is a metric which is uniformly continuous with respect to the norm.

Let C be a closed convex subset which is dentable with respect to a complete metric d defined on it. Assume moreover that d is uniformly continuous on bounded sets with respect to the norm and induces the norm topology. Then C has the RNP.

Outline

Properties of dentable maps

E SQA

\mathcal{DC} functions

Definition

A function $f: C \to \mathbb{R}$ is said to be \mathcal{DC} (or **delta-convex**) if it can be represented as the difference of two convex continuous functions on C, and it is said to be \mathcal{DC} -Lipschitz if it is the difference of two convex Lipschitz functions.

\mathcal{DC} functions

Definition

A function $f: C \to \mathbb{R}$ is said to be \mathcal{DC} (or **delta-convex**) if it can be represented as the difference of two convex continuous functions on C, and it is said to be \mathcal{DC} -Lipschitz if it is the difference of two convex Lipschitz functions.

Theorem (Cepedello, 1998)

A Banach space X is superreflexive if, and only if, every Lipschitz function $f: X \to \mathbb{R}$ can be approximated uniformly on bounded sets by \mathcal{DC} functions which are Lipschitz on bounded sets.

\mathcal{DC} functions

Definition

A function $f: C \to \mathbb{R}$ is said to be \mathcal{DC} (or **delta-convex**) if it can be represented as the difference of two convex continuous functions on C, and it is said to be \mathcal{DC} -Lipschitz if it is the difference of two convex Lipschitz functions.

Theorem (Cepedello, 1998)

A Banach space X is superreflexive if, and only if, every Lipschitz function $f: X \to \mathbb{R}$ can be approximated uniformly on bounded sets by \mathcal{DC} functions which are Lipschitz on bounded sets.

Theorem (Raja, 2008)

A Lipschitz function $f: C \to \mathbb{R}$ is finitely dentable if, and only if, f is uniform limit of \mathcal{DC} -Lipschitz functions.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Finitely dentable functions

Given a dentable map $f: C \to M$ defined on a bounded set we may consider the following "derivation"

$$\begin{split} &[D]'_{\varepsilon} = \{ x \in D : \operatorname{diam}(f(D \cap H)) > \varepsilon, \ \forall H \in \mathbb{H}, x \in H \} \\ &[C]^{\alpha+1}_{\varepsilon} = [[C]^{\alpha}_{\varepsilon}]'_{\varepsilon} \\ &[C]^{\alpha}_{\varepsilon} = \bigcap_{\beta < \alpha} [C]^{\beta}_{\varepsilon} \text{ if } \alpha \text{ is a limit ordinal }. \end{split}$$

EL SQA

Finitely dentable functions

Given a dentable map $f: C \to M$ defined on a bounded set we may consider the following "derivation"

$$\begin{split} [D]'_{\varepsilon} &= \{ x \in D : \operatorname{diam}(f(D \cap H)) > \varepsilon, \ \forall H \in \mathbb{H}, x \in H \} \\ [C]^{\alpha+1}_{\varepsilon} &= [[C]^{\alpha}_{\varepsilon}]'_{\varepsilon} \\ [C]^{\alpha}_{\varepsilon} &= \bigcap_{\beta < \alpha} [C]^{\beta}_{\varepsilon} \text{ if } \alpha \text{ is a limit ordinal }. \end{split}$$

Definition

We say that

f is **finitely dentable** if for every $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $[C]_{\varepsilon}^{n} = \emptyset$. *f* is **countably dentable** if for every $\varepsilon > 0$ there is $\alpha < \omega_{1}$ s.t. $[C]_{\varepsilon}^{n} = \emptyset$.

b 4 E b 4 E b

Dentability and \mathcal{DC} -functions

A set *D* is said to be a $(\mathcal{C} \setminus \mathcal{C})_{\sigma}$ -set if $D = \bigcup_{n=1}^{\infty} (A_n \setminus B_n)$, where A_n and B_n are convex closed sets. A function $f : \mathcal{C} \to \mathbb{R}$ is said to be $(\mathcal{C} \setminus \mathcal{C})_{\sigma}$ -measurable if the sets $f^{-1}(-\infty, r)$ and $f^{-1}(r, +\infty)$ are both $(\mathcal{C} \setminus \mathcal{C})_{\sigma}$ subsets of *X* for each $r \in \mathbb{R}$.

Let $f: C \to \mathbb{R}$ be a uniformly continuous function defined on a bounded closed convex set. Consider the following statements:

- (i) f is uniform limit of \mathcal{DC} functions;
- (ii) f is uniform limit of \mathcal{DC} -Lipschitz functions;
- (iii) f is finitely dentable;
- (iv) f is countably dentable;
- (v) f is $(\mathcal{C} \setminus \mathcal{C})_{\sigma}$ -measurable;
- (vi) f is pointwise limit of \mathcal{DC} -Lipschitz functions.

Then $(i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (v) \Rightarrow (iv) \Rightarrow (iii).$

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relation with \mathcal{DC} maps

Definition (Veselý-Zajíček, 1989)

A continuous map $F: C \to Y$ is said to be a \mathcal{DC} map if there exists a continuous (necessarily convex) function $f: C \to \mathbb{R}$, called **control** function for F, such that $f + y^* \circ F$ is a convex continuous function on A for every $y^* \in S_{Y^*}$

Relation with \mathcal{DC} maps

Definition (Veselý-Zajíček, 1989)

A continuous map $F: C \to Y$ is said to be a \mathcal{DC} map if there exists a continuous (necessarily convex) function $f: C \to \mathbb{R}$, called **control** function for F, such that $f + y^* \circ F$ is a convex continuous function on A for every $y^* \in S_{Y^*}$

Let us notice that f is a control function for F if, and only if,

$$\left\|\sum_{i=1}^{n} \lambda_{i} F(x_{i}) - F(\sum_{i=1}^{n} \lambda_{i} x_{i})\right\| \leq \sum_{i=1}^{n} \lambda_{i} f(x_{i}) - f(\sum_{i=1}^{n} \lambda_{i} x_{i})$$

whenever $x_{1}, \dots, x_{n} \in A$, $\lambda_{1}, \dots, \lambda_{n} \geq 0$ and $\sum_{i=1}^{n} \lambda_{i} = 1$.

Relation with \mathcal{DC} maps

Definition (Veselý-Zajíček, 1989)

A continuous map $F: C \to Y$ is said to be a \mathcal{DC} map if there exists a continuous (necessarily convex) function $f: C \to \mathbb{R}$, called **control** function for F, such that $f + y^* \circ F$ is a convex continuous function on A for every $y^* \in S_{Y^*}$

Let us notice that f is a control function for F if, and only if,

$$\left\|\sum_{i=1}^n \lambda_i F(x_i) - F(\sum_{i=1}^n \lambda_i x_i)\right\| \leq \sum_{i=1}^n \lambda_i f(x_i) - f(\sum_{i=1}^n \lambda_i x_i)$$

whenever $x_1, \ldots, x_n \in A$, $\lambda_1, \ldots, \lambda_n \ge 0$ and $\sum_{i=1}^n \lambda_i = 1$.

Let $D \subset Y$ be a closed convex set. Then the following are equivalent: (i) the set D has the RNP;

(ii) for every Banach space X and every convex subset $C \subset X$, every bounded continuous \mathcal{DC} map $F \colon C \to D$ admitting a bounded control function is dentable.

L. García-Lirola (Universidad de Murcia)

Maps with the RNP

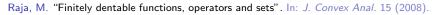
References

Bourgain, J. "Dentability and finite-dimensional decompositions". In: *Studia Math.* 67.2 (1980), pp. 135–148.

Cepedello Boiso, Manuel. "Approximation of Lipschitz functions by Δ -convex functions in Banach spaces". In: *Israel J. Math.* 106 (1998), pp. 269–284.

García, F. et al. "Kuratowski's index of non-compactness and renorming in Banach spaces". In: J. Convex Anal. 11.2 (2004), pp. 477–494.

García-Lirola, L. and M. Raja. "Maps with the Radon-Nikodým property". 2016.



Reĭnov, O. I. "RN type operators in Banach spaces". In: *Dokl. Akad. Nauk SSSR* 220 (1975), pp. 528–531.

Veselý, L. and L. Zajíček. "Delta-convex mappings between Banach spaces and applications". In: Dissertationes Math. (Rozprawy Mat.) 289 (1989).

Thank you for your attention

L. García-Lirola (Universidad de Murcia)

Maps with the RNF