Extremal structure of Lipschitz-free spaces

Luis C. García-Lirola

Joint work with A. Rueda Zoca, C. Petitjean y A. Procházka

Colloquium KSU

December, 2018

Research partially supported by

X Banach space,

X Banach space, B_X unit ball of X.

X Banach space, B_X unit ball of X.

Definition

$$\lambda y + (1 - \lambda)z = x, y, z \in B_X, \lambda \in (0, 1) \quad \Rightarrow \quad x = y = z$$

X Banach space, $X^* = \{f : X \to \mathbb{R} \text{ linear, continuous}\}\$ B_X unit ball of X.

Definition

$$\lambda y + (1 - \lambda)z = x, y, z \in B_X, \lambda \in (0, 1) \quad \Rightarrow \quad x = y = z$$

 $\begin{array}{ll} X \text{ Banach space,} & X^* = \{f \colon X \to \mathbb{R} \text{ linear, continuous} \} \\ B_X \text{ unit ball of } X. & X^{**} \text{ bidual} \end{array}$

Definition

$$\lambda y + (1 - \lambda)z = x, y, z \in B_X, \lambda \in (0, 1) \quad \Rightarrow \quad x = y = z$$

X Banach space, $X^* = \{f : X \to \mathbb{R} \text{ linear, continuous}\}\$ B_X unit ball of X. X^{**} bidual

Definition

• $x \in B_X$ is an **extreme point** if

$$\lambda y + (1 - \lambda)z = x, y, z \in B_X, \lambda \in (0, 1) \quad \Rightarrow \quad x = y = z$$

x ∈ *B_X* is a preserved extreme point if it is an extreme point of *B_{X**}*

X Banach space, $X^* = \{f : X \to \mathbb{R} \text{ linear, continuous}\}\$ B_X unit ball of X. X^{**} bidual

Definition

• $x \in B_X$ is an **extreme point** if

$$\lambda y + (1 - \lambda)z = x, y, z \in B_X, \lambda \in (0, 1) \quad \Rightarrow \quad x = y = z$$

• $x \in B_X$ is a **preserved extreme point** if it is an extreme point of $B_{X^{**}}$, equivalently, the slices of B_X containing x are a neighbourhood basis of x in (B_X, w) .

X Banach space, $X^* = \{f : X \to \mathbb{R} \text{ linear, continuous}\}\$ B_X unit ball of X. X^{**} bidual

Definition

$$\lambda y + (1 - \lambda)z = x, y, z \in B_X, \lambda \in (0, 1) \quad \Rightarrow \quad x = y = z$$

- $x \in B_X$ is a **preserved extreme point** if it is an extreme point of $B_{X^{**}}$, equivalently, the slices of B_X containing x are a neighbourhood basis of x in (B_X, w) .
- x ∈ B_X is a denting point if the slices of B_X containing x are a neighbourhood basis of x in (B_X, ||·||)

X Banach space, $X^* = \{f : X \to \mathbb{R} \text{ linear, continuous}\}\$ B_X unit ball of X. X^{**} bidual

Definition

$$\lambda y + (1 - \lambda)z = x, y, z \in B_X, \lambda \in (0, 1) \quad \Rightarrow \quad x = y = z$$

- $x \in B_X$ is a **preserved extreme point** if it is an extreme point of $B_{X^{**}}$, equivalently, the slices of B_X containing x are a neighbourhood basis of x in (B_X, w) .
- x ∈ B_X is a denting point if the slices of B_X containing x are a neighbourhood basis of x in (B_X, ||·||), equivalently, for each ε > 0 there is a slice S of B_X containing x with diam(S) < ε.

(M, d) metric space,

$$\mathsf{Lip}_0(M) = \{f \colon M \to \mathbb{R} \text{ Lipschitz},$$

}

(M, d) metric space,

$$\operatorname{Lip}_{0}(M) = \{f \colon M \to \mathbb{R} \text{ Lipschitz}, \}$$
$$\|f\|_{L} = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)}, x \neq y\right\}$$

$$\operatorname{Lip}_{0}(M) = \{f \colon M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$$
$$\|f\|_{L} = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)}, x \neq y\right\}$$

$$\operatorname{Lip}_{0}(M) = \{f \colon M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$$
$$\|f\|_{L} = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)}, x \neq y\right\}$$

Given $x \in M$ and $f \in Lip_0(M)$, we denote $\delta_x(f) := f(x)$.

$$\operatorname{Lip}_{0}(M) = \{f \colon M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$$
$$\|f\|_{L} = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)}, x \neq y\right\}$$

Given $x \in M$ and $f \in Lip_0(M)$, we denote $\delta_x(f) := f(x)$.

Definition

The Lipschitz-free space over M is defined as

$$\mathcal{F}(M) = \overline{\operatorname{span}}\{\delta_x : x \in M\} \subset \operatorname{Lip}_0(M)^*.$$

$$\operatorname{Lip}_{0}(M) = \{f \colon M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$$
$$\|f\|_{L} = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)}, x \neq y\right\}$$

Given $x \in M$ and $f \in Lip_0(M)$, we denote $\delta_x(f) := f(x)$.

Definition

The Lipschitz-free space over M is defined as

$$\mathcal{F}(M) = \overline{\operatorname{span}}\{\delta_x : x \in M\} \subset \operatorname{Lip}_0(M)^*.$$

$$\operatorname{Lip}_{0}(M) = \{f \colon M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$$
$$\|f\|_{L} = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)}, x \neq y\right\}$$

Given $x \in M$ and $f \in \text{Lip}_0(M)$, we denote $\delta_x(f) := f(x)$.

Definition

The Lipschitz-free space over M is defined as

$$\mathcal{F}(M) = \overline{\operatorname{span}}\{\delta_x : x \in M\} \subset \operatorname{Lip}_0(M)^*.$$

•
$$\|\delta_x\| = d(x, 0)$$
,

$$\operatorname{Lip}_{0}(M) = \{f \colon M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$$
$$\|f\|_{L} = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)}, x \neq y\right\}$$

Given $x \in M$ and $f \in \text{Lip}_0(M)$, we denote $\delta_x(f) := f(x)$.

Definition

The Lipschitz-free space over M is defined as

$$\mathcal{F}(M) = \overline{\operatorname{span}}\{\delta_x : x \in M\} \subset \operatorname{Lip}_0(M)^*.$$

•
$$\|\delta_x\| = d(x,0),$$

•
$$\|\delta_x - \delta_y\| = d(x, y),$$

$$\operatorname{Lip}_{0}(M) = \{f \colon M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$$
$$\|f\|_{L} = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)}, x \neq y\right\}$$

Given $x \in M$ and $f \in Lip_0(M)$, we denote $\delta_x(f) := f(x)$.

Definition

The Lipschitz-free space over M is defined as

$$\mathcal{F}(M) = \overline{\operatorname{span}} \{ \delta_x : x \in M \} \subset \operatorname{Lip}_0(M)^*.$$

•
$$\|\delta_x\| = d(x,0),$$

• $\|\delta_x - \delta_y\| = d(x,y),$
• $B_{\mathcal{F}(M)} = \overline{\operatorname{conv}} \left\{ \frac{\delta_x - \delta_y}{d(x,y)}, x \neq y \right\}$

$rac{\delta_x-\delta_y}{d(x,y)}$ is extreme if and only if d(x,z)+d(z,y)>d(x,y) $orall z\in M\setminus\{x,y\}.$

 $rac{\delta_x-\delta_y}{d(x,y)}$ is extreme if and only if d(x,z)+d(z,y)>d(x,y) $orall z\in M\setminus\{x,y\}.$

True if M:

- compact (Aliaga-Guirao, 2017).
- bounded and uniformly discrete (GL-RZ-P-P).

 $rac{\delta_x-\delta_y}{d(x,y)}$ is extreme if and only if d(x,z)+d(z,y)>d(x,y) $orall z\in M\setminus\{x,y\}.$

True if M:

- compact (Aliaga-Guirao, 2017).
- bounded and uniformly discrete (GL-RZ-P-P).

The general case has just been solved by Aliaga and Pernecka.

 $rac{\delta_x-\delta_y}{d(x,y)}$ is extreme if and only if d(x,z)+d(z,y)>d(x,y) $orall z\in M\setminus\{x,y\}.$

True if M:

- compact (Aliaga-Guirao, 2017).
- bounded and uniformly discrete (GL-RZ-P-P).

The general case has just been solved by Aliaga and Pernecka.

Question

If $\mu \in \mathcal{F}(M)$ is a extreme point, then $\mu = \frac{\delta_x - \delta_y}{d(x,y)}$ for some $x, y \in M$.

 $rac{\delta_x-\delta_y}{d(x,y)}$ is extreme if and only if d(x,z)+d(z,y)>d(x,y) $orall z\in M\setminus\{x,y\}.$

True if *M*:

- compact (Aliaga-Guirao, 2017).
- bounded and uniformly discrete (GL-RZ-P-P).

The general case has just been solved by Aliaga and Pernecka.

Question

If
$$\mu \in \mathcal{F}(M)$$
 is a extreme point, then $\mu = \frac{\delta_x - \delta_y}{d(x,y)}$ for some $x, y \in M$.

True if M is compact and the metric is of the form $d^{\alpha},\,0<\alpha<1$ (GL-RZ-P-P)

 $rac{\delta_x-\delta_y}{d(x,y)}$ is extreme if and only if d(x,z)+d(z,y)>d(x,y) $orall z\in M\setminus\{x,y\}.$

True if *M*:

- compact (Aliaga-Guirao, 2017).
- bounded and uniformly discrete (GL-RZ-P-P).

The general case has just been solved by Aliaga and Pernecka.

Question

If
$$\mu \in \mathcal{F}(M)$$
 is a extreme point, then $\mu = rac{\delta_x - \delta_y}{d(x,y)}$ for some $x, y \in M$.

True if M is compact and the metric is of the form $d^{\alpha},\,0<\alpha<1$ (GL-RZ-P-P)

Theorem (Weaver)

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is of the form $\frac{\delta_x - \delta_y}{d(x,y)}$.

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Proof.

If $d(x_{\alpha}, x) \neq 0$, then there is $0 < \varepsilon < \min\{d(x, y), \limsup_{\alpha} d(x_{\alpha}, x)\}$.

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Proof.

If $d(x_{\alpha}, x) \not\rightarrow 0$, then there is $0 < \varepsilon < \min\{d(x, y), \limsup_{\alpha} d(x_{\alpha}, x)\}$. Consider the Lipschitz function

$$f(t) = \max\{\varepsilon - d(x, t), 0\}$$

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Proof.

If $d(x_{\alpha}, x) \not\rightarrow 0$, then there is $0 < \varepsilon < \min\{d(x, y), \limsup_{\alpha} d(x_{\alpha}, x)\}$. Consider the Lipschitz function

$$f(t) = \max\{\varepsilon - d(x, t), 0\}$$

On the one hand, $\frac{f(x)-f(y)}{d(x,y)} = \frac{\varepsilon}{d(x,y)} > 0.$

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Proof.

If $d(x_{\alpha}, x) \neq 0$, then there is $0 < \varepsilon < \min\{d(x, y), \limsup_{\alpha} d(x_{\alpha}, x)\}$. Consider the Lipschitz function

$$f(t) = \max\{\varepsilon - d(x, t), 0\}$$

On the one hand, $\frac{f(x)-f(y)}{d(x,y)} = \frac{\varepsilon}{d(x,y)} > 0$. On the other,

$$\liminf_{\alpha} \frac{f(x_{\alpha}) - f(y_{\alpha})}{d(x_{\alpha}, y_{\alpha})} = \liminf_{\alpha} \frac{-f(y_{\alpha})}{d(x_{\alpha}, y_{\alpha})} \leq 0.$$

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Proof. Assume $\frac{\delta_x - \delta_y}{d(x,y)}$ is not a denting point.

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Proof. Assume $\frac{\delta_x - \delta_y}{d(x,y)}$ is not a denting point. Then there is $\varepsilon > 0$ such that $\operatorname{diam}(S) > \varepsilon$ for every slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$.

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Proof.

Assume $\frac{\delta_x - \delta_y}{d(x,y)}$ is not a denting point. Then there is $\varepsilon > 0$ such that $\operatorname{diam}(S) > \varepsilon$ for every slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$.

• Case 1. For every slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$ there is $\frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} \in S$ such that $\left\| \frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} - \frac{\delta_x - \delta_y}{d(x,y)} \right\| > \varepsilon/4$.

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Proof.

Assume $\frac{\delta_x - \delta_y}{d(x,y)}$ is not a denting point. Then there is $\varepsilon > 0$ such that $\operatorname{diam}(S) > \varepsilon$ for every slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$.

• Case 1. For every slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$ there is $\frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} \in S$ such that $\left\| \frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} - \frac{\delta_x - \delta_y}{d(x,y)} \right\| > \varepsilon/4$. Since the slices containing $\frac{\delta_x - \delta_y}{d(x,y)}$ are a neighbourhood basis for the weak topology, we have $\frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} \xrightarrow{w} \frac{\delta_x - \delta_y}{d(x,y)}$.

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Proof.

Assume $\frac{\delta_x - \delta_y}{d(x,y)}$ is not a denting point. Then there is $\varepsilon > 0$ such that $\operatorname{diam}(S) > \varepsilon$ for every slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$.

• Case 1. For every slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$ there is $\frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} \in S$ such that $\left\| \frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} - \frac{\delta_x - \delta_y}{d(x,y)} \right\| > \varepsilon/4$. Since the slices containing $\frac{\delta_x - \delta_y}{d(x,y)}$ are a neighbourhood basis for the weak topology, we have $\frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} \xrightarrow{w} \frac{\delta_x - \delta_y}{d(x,y)}$. Thus $d(x_S, x) \to 0$ y $d(y_S, y) \to 0$.

Lemma

If
$$\frac{\delta_{x_{\alpha}} - \delta_{y_{\alpha}}}{d(x_{\alpha}, y_{\alpha})}$$
 converges weakly to $\frac{\delta_{x} - \delta_{y}}{d(x, y)}$, then $d(x_{\alpha}, x) \to 0$ y $d(y_{\alpha}, y) \to 0$.

Proof.

Assume $\frac{\delta_x - \delta_y}{d(x,y)}$ is not a denting point. Then there is $\varepsilon > 0$ such that $\operatorname{diam}(S) > \varepsilon$ for every slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$.

• Case 1. For every slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$ there is $\frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} \in S$ such that $\left\| \frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} - \frac{\delta_x - \delta_y}{d(x,y)} \right\| > \varepsilon/4$. Since the slices containing $\frac{\delta_x - \delta_y}{d(x,y)}$ are a neighbourhood basis for the weak topology, we have $\frac{\delta_{x_S} - \delta_{y_S}}{d(x_S,y_S)} \stackrel{W}{\to} \frac{\delta_x - \delta_y}{d(x,y)}$. Thus $d(x_S, x) \to 0$ y $d(y_S, y) \to 0$. This is a contradiction.

Proof.

• Case 2 (based on the Superlemma of Asplund-Bourgain-Namioka).

Proof.

• **Case 2** (based on the Superlemma of Asplund-Bourgain-Namioka). There is a slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$ with $V \cap S \subset B(\frac{\delta_x - \delta_y}{d(x,y)}, \varepsilon/4)$, where $V = \{\frac{\delta_u - \delta_v}{d(u,v)}, u \neq v\}$.

Proof.

• Case 2 (based on the Superlemma of Asplund-Bourgain-Namioka). There is a slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$ with $V \cap S \subset B(\frac{\delta_x - \delta_y}{d(x,y)}, \varepsilon/4)$, where $V = \{\frac{\delta_u - \delta_v}{d(u,v)}, u \neq v\}$. We have

$$egin{aligned} B_{\mathcal{F}(\mathcal{M})} &= \overline{ ext{conv}}(V) = \overline{ ext{conv}}(V \cap S) \cup (V \setminus S)) \ &\subset \overline{ ext{conv}}\left(B(rac{\delta_x - \delta_y}{d(x,y)}, arepsilon/4) \cup \overline{ ext{conv}}(V \setminus S)
ight) \end{aligned}$$

Proof.

• **Case 2** (based on the Superlemma of Asplund-Bourgain-Namioka). There is a slice *S* containing $\frac{\delta_x - \delta_y}{d(x,y)}$ with $V \cap S \subset B(\frac{\delta_x - \delta_y}{d(x,y)}, \varepsilon/4)$, where $V = \{\frac{\delta_u - \delta_v}{d(u,v)}, u \neq v\}$. We have

$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}(V) = \overline{\operatorname{conv}}(V \cap S) \cup (V \setminus S))$$
$$\subset \overline{\operatorname{conv}}\left(B(\frac{\delta_x - \delta_y}{d(x, y)}, \varepsilon/4) \cup \overline{\operatorname{conv}}(V \setminus S)\right)$$

Consider

$$C_r = \left\{ \lambda x + (1-\lambda)y : x \in B(\frac{\delta_x - \delta_y}{d(x,y)}, \varepsilon/4), y \in \overline{\operatorname{conv}}(V \setminus S), \lambda \in [0,r] \right\}$$

Proof.

• **Case 2** (based on the Superlemma of Asplund-Bourgain-Namioka). There is a slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$ with $V \cap S \subset B(\frac{\delta_x - \delta_y}{d(x,y)}, \varepsilon/4)$, where $V = \{\frac{\delta_u - \delta_v}{d(u,v)}, u \neq v\}$. We have

$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}(V) = \overline{\operatorname{conv}}(V \cap S) \cup (V \setminus S))$$

$$\subset \overline{\operatorname{conv}}\left(B(\frac{\delta_x - \delta_y}{d(x, y)}, \varepsilon/4) \cup \overline{\operatorname{conv}}(V \setminus S)\right)$$

Consider

$$C_r = \left\{ \lambda x + (1 - \lambda)y : x \in B(\frac{\delta_x - \delta_y}{d(x, y)}, \varepsilon/4), y \in \overline{\operatorname{conv}}(V \setminus S), \lambda \in [0, r] \right\}$$

Since $\frac{\delta_x - \delta_y}{d(x,y)}$ is a preserved extreme point, we have $\frac{\delta_x - \delta_y}{d(x,y)} \in B_{\mathcal{F}(M)} \setminus \overline{C_r}$.

Proof.

• **Case 2** (based on the Superlemma of Asplund-Bourgain-Namioka). There is a slice S containing $\frac{\delta_x - \delta_y}{d(x,y)}$ with $V \cap S \subset B(\frac{\delta_x - \delta_y}{d(x,y)}, \varepsilon/4)$, where $V = \{\frac{\delta_u - \delta_v}{d(u,v)}, u \neq v\}$. We have

$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}(V) = \overline{\operatorname{conv}}(V \cap S) \cup (V \setminus S))$$

$$\subset \overline{\operatorname{conv}}\left(B(\frac{\delta_x - \delta_y}{d(x, y)}, \varepsilon/4) \cup \overline{\operatorname{conv}}(V \setminus S)\right)$$

Consider

$$C_r = \left\{ \lambda x + (1 - \lambda)y : x \in B(\frac{\delta_x - \delta_y}{d(x, y)}, \varepsilon/4), y \in \overline{\operatorname{conv}}(V \setminus S), \lambda \in [0, r] \right\}$$

Since $\frac{\delta_x - \delta_y}{d(x,y)}$ is a preserved extreme point, we have $\frac{\delta_x - \delta_y}{d(x,y)} \in B_{\mathcal{F}(M)} \setminus \overline{C_r}$. If $r \approx 0$, then $\operatorname{diam}(B_{\mathcal{F}(M)} \setminus \overline{C_r}) < \varepsilon$.

Proof.

• **Case 2** (based on the Superlemma of Asplund-Bourgain-Namioka). There is a slice *S* containing $\frac{\delta_x - \delta_y}{d(x,y)}$ with $V \cap S \subset B(\frac{\delta_x - \delta_y}{d(x,y)}, \varepsilon/4)$, where $V = \{\frac{\delta_u - \delta_v}{d(u,v)}, u \neq v\}$. We have

$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}(V) = \overline{\operatorname{conv}}(V \cap S) \cup (V \setminus S))$$
$$\subset \overline{\operatorname{conv}}\left(B(\frac{\delta_x - \delta_y}{d(x, y)}, \varepsilon/4) \cup \overline{\operatorname{conv}}(V \setminus S)\right)$$

Consider

$$C_r = \left\{ \lambda x + (1 - \lambda)y : x \in B(\frac{\delta_x - \delta_y}{d(x, y)}, \varepsilon/4), y \in \overline{\operatorname{conv}}(V \setminus S), \lambda \in [0, r] \right\}$$

Since $\frac{\delta_x - \delta_y}{d(x,y)}$ is a preserved extreme point, we have $\frac{\delta_x - \delta_y}{d(x,y)} \in B_{\mathcal{F}(M)} \setminus \overline{C_r}$. If $r \approx 0$, then diam $(B_{\mathcal{F}(M)} \setminus \overline{C_r}) < \varepsilon$. Now, we can take a slice S with $\frac{\delta_x - \delta_y}{d(x,y)} \in S \subset B_{\mathcal{F}(M)} \setminus \overline{C_r}$. Question

Is every extreme point of $B_{\mathcal{F}(M)}$ is a preserved extreme point?

Question

Is every extreme point of $B_{\mathcal{F}(M)}$ is a preserved extreme point?

No! To see that we need the following result.

Theorem (Aliaga-Guirao, 2017)

 $\frac{\delta_x - \delta_y}{d(x,y)}$ is a preserved extreme point of $B_{\mathcal{F}(M)}$ if and only if for all $\varepsilon > 0$ there is $\delta > 0$ such that

 $(1-\delta)(d(x,z)+d(z,y)) < d(x,y) \Rightarrow \min\{d(x,z),d(y,z)\} < \varepsilon$

Question

Is every extreme point of $B_{\mathcal{F}(M)}$ is a preserved extreme point?

No! To see that we need the following result.

Theorem (Aliaga-Guirao, 2017)

 $\frac{\delta_x - \delta_y}{d(x,y)}$ is a preserved extreme point of $B_{\mathcal{F}(M)}$ if and only if for all $\varepsilon > 0$ there is $\delta > 0$ such that

$$(1-\delta)(d(x,z)+d(z,y)) < d(x,y) \Rightarrow \min\{d(x,z),d(y,z)\} < \varepsilon$$

Example

Let $M = \{0\} \cup \{x_n\} \subset c_0$, where $x_1 = 2e_n$, $x_n = e_1 + (1 + 1/n)e_n$ if $n \ge 2$. Then $\frac{\delta_{x_1} - \delta_0}{d(x_1, 0)}$ is an extreme point of $B_{\mathcal{F}(M)}$ which is not a preserved extreme point.

Definition (Schachermayer, 1983)

A Banach space has **property** α if there is $\Gamma = \{x_{\lambda}\} \subset X$ and $\Gamma^* = \{x_{\lambda}^*\}$ such that

2 There is $\leq \alpha < 1$ such that $|x_{\lambda}^{*}(x_{\mu})| \leq \alpha$ if $\lambda \neq \mu$.

Definition (Schachermayer, 1983)

A Banach space has **property** α if there is $\Gamma = \{x_{\lambda}\} \subset X$ and $\Gamma^* = \{x_{\lambda}^*\}$ such that

1
$$||x_{\lambda}|| = ||x_{\lambda}^*|| = |x_{\lambda}^*(x_{\lambda})| = 1.$$

2 There is
$$\leq \alpha < 1$$
 such that $|x_{\lambda}^*(x_{\mu})| \leq \alpha$ if $\lambda \neq \mu$.

 $onv(\Gamma) = B_X.$

If a Banach space has property α then every operator $T: X \to Y$ can be approximated by operators attaining the norm.

Definition (Schachermayer, 1983)

A Banach space has **property** α if there is $\Gamma = \{x_{\lambda}\} \subset X$ and $\Gamma^* = \{x_{\lambda}^*\}$ such that

1
$$||x_{\lambda}|| = ||x_{\lambda}^*|| = |x_{\lambda}^*(x_{\lambda})| = 1.$$

2 There is $\leq \alpha < 1$ such that $|x_{\lambda}^*(x_{\mu})| \leq \alpha$ if $\lambda \neq \mu$.

 $onv(\Gamma) = B_X.$

If a Banach space has property α then every operator $T: X \to Y$ can be approximated by operators attaining the norm.

Question

```
When \mathcal{F}(M) has property \alpha?
```

A metric space is said to be **concave** if every molecule is a preserved extreme point of $B_{\mathcal{F}(M)}$.

A metric space is said to be **concave** if every molecule is a preserved extreme point of $B_{\mathcal{F}(M)}$.

For instance, every Holder metric space (that is, the metric is of the form d^{θ} for some $0 < \theta < 1$) is concave.

A metric space is said to be **concave** if every molecule is a preserved extreme point of $B_{\mathcal{F}(M)}$.

For instance, every Holder metric space (that is, the metric is of the form d^{θ} for some $0 < \theta < 1$) is concave.

Theorem (Cascales-Chiclana-GL-Martín-Rueda Zoca, 2018)

Let M be a concave metric space. Then $\mathcal{F}(M)$ has property α if and only if M is uniformly discrete and bounded and there is $\varepsilon > 0$ such that

$$d(x,z) + d(z,y) - d(x,y) \ge \varepsilon$$

Thank you for your attention!