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A. Rueda Zoca. “On strongly norm attaining Lipschitz maps”. In: J.
of Funct. Anal. 277 (2019), pp. 1677–1717.
Chiclana, R., L. C. Garćıa-Lirola, M. Mart́ın, and A. Rueda Zoca.
“Examples and applications of strongly norm attaining Lipschitz
maps”. arXiv. 2019.



(M, d) complete metric space

0 ∈ M distinguished point
Lip0(M) = {f : M → R Lipschitz function

, f (0) = 0

}

‖f ‖L := sup

{
|f (x)− f (y)|

d(x , y)
: x 6= y

}
.

We say that f strongly attains its norm if

‖f ‖L =
|f (x)− f (y)|

d(x , y)

for some x , y ∈ M. We denote SNA(M) the set of such maps.

Problem (Godefroy, 2015)

What are metric spaces M such that for every Lipschitz function
f ∈ Lip0(M) we can find a sequence (fn)n ⊂ SNA(M) such that
‖f − fn‖L → 0?

Equivalently, we want SNA(M) to be dense in the Banach space
(Lip0(M), ‖·‖L).
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Negative results

Theorem (Kadets-Mart́ın-Soloviova, 2016)

If M is a geodesic space (in particular, M = [0, 1]) then
SNA(M) 6= Lip0(M).

Theorem (Cascales-Chiclana-GL-Mart́ın-Rueda Zoca, 2019)

SNA(M) 6= Lip0(M) provided

M is a length space (i.e. d(x , y) is the infimum of the length of
curves joining x and y, for every x , y).

M ⊂ R is closed and λ(M) > 0.

M = S1 ⊂ R2.

Is there an equivalent distance d ′ on [0, 1] such that
SNA([0, 1], d ′) = Lip0([0, 1], d ′)?

Let M ⊂ Rn be a compact differential manifold, endowed with the metric
inherited from Rn. Do we have SNA(M) 6= Lip0(M)?
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Lipschitz-free spaces

Assume first that M = {0, a1 . . . , an} is finite.

We can identify
f ≡ (f (a1), . . . , f (an)). Then

BLip0(M) =

{
f : 〈f ,

ei − ej
d(ai , aj)

〉 ≤ 1 ∀i 6= j

}
(e0 = 0)

and its polar is

B◦Lip0(M) = conv

{
ei − ej
d(ai , aj)

: i 6= j

}
=: BF(M)

Now, let M be an arbitrary metric space. Given x ∈ M, we denote
δ(x) ∈ Lip0(M)∗ the evaluation functional: 〈δ(x), f 〉 = f (x). The
Lipschitz-free space over M is defined as

F(M) := span{δ(x) : x ∈ M} ⊂ Lip0(M)∗

We have BF(M) = conv{ δ(x)−δ(y)d(x ,y) : x 6= y}
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Nice characterizations

M embeds into an R-tree if and only if F(M) is isometric to a
subspace of L1(µ) (Godard ’10).

d(x , z) + d(z , y)− d(x , y) > 0 for all z 6= x , y if and only if δ(x)−δ(y)
d(x ,y)

is an extreme point of BF(M) (Aliaga-Pernecká ’19).

M is a length space if and only if BF(M) does not have strongly
exposed points. (Ivakhno-Kadets-Werner ’09 + GL-Procházka-Rueda
Zoca ’18 + Avilés-Mart́ınez Cervantes ’19).

Conjecture

M is a geodesic space if and only if BF(M) does not have extreme points
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Positive results

If f strongly attains its norm at x , y ∈ M, then

‖f ‖L =
f (x)− f (y)

d(x , y)
= f̂

(
δ(x)− δ(y)

d(x , y)

)
,

that is, f̂ attains its norm.That is, SNA(M) ⊂ NA(F(M)).

The converse does not hold: we have SNA([0, 1]) 6= Lip0([0, 1]). But
Bishop-Phelps theorem ensures that NA(F(M)) is dense for any M!

Theorem (Godefroy, 2015)

Assume M is a compact metric space and lip0(M)∗ = F(M). Then
SNA(M) = Lip0(M).

The above condition holds if M is compact and countable, or compact and
Hölder.
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Positive results

Theorem (GL-Petitjean-Procházka-Rueda Zoca, 2018)

Assume that F(M) has the Radon-Nikodym Property. Then
SNA(M) = Lip0(M).

A Banach space has the RNP if and only if every closed convex bounded
C ⊂ X satisfies C = conv(strexpC ).
Every reflexive Banach space and every separable dual Banach space enjoy
the RNP.

The space F(M) has the RNP in the following cases:

M is uniformly discrete (Kalton, 2004)

M is compact countable (Dalet, 2015)

M is compact Hölder (Weaver, 1999)

M is a closed subset of R with measure 0 (Godard, 2010)
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Assume that F(M) has the Radon-Nikodym Property. Then
SNA(M) = Lip0(M).

A Banach space has the RNP if and only if every closed convex bounded
C ⊂ X satisfies C = conv(strexpC ).
Every reflexive Banach space and every separable dual Banach space enjoy
the RNP.

The space F(M) has the RNP in the following cases:

M is uniformly discrete (Kalton, 2004)

M is compact countable (Dalet, 2015)

M is compact Hölder (Weaver, 1999)

M is a closed subset of R with measure 0 (Godard, 2010)



Looking for a characterization

We know that

strexpBF(M) = ∅ ⇒ M length space ⇒ SNA(M) is not dense.

F(M) RNP ⇒ SNA(M) is dense.

The converse doesn’t hold: there is a compact metric space M such
that SNA(M) = Lip0(M) but F(M) has the RNP.

A natural conjecture is the following:

Conjecture

SNA(M) = Lip0(M) if and only if BF(M) = conv(strexpBF(M)).

Theorem (Chiclana-GL-Mart́ın-Rueda Zoca, 2019)

Assume M is compact and SNA(M) = Lip0(M). Then
BF(M) = conv(strexpBF(M)).

However, if M = S1 ⊂ R2 then BF(M) = conv(strexpBF(M))!
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Weak density

Theorem (Cascales-Chiclana-GL-Mart́ın-Rueda Zoca)

SNA(M,R) is weakly sequentially dense in Lip0(M,R)

This extends a result by
Kadets-Mart́ın-Soloviova, who
proved that the same holds
when M is a length space.

The tool: (fn)n ⊂ Lip0(M)
bounded with pairwise disjoint
supports ⇒ (fn)n is weakly null.
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