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Equivalently, we want SNA(M) to be dense in the Banach space
(Lipo (M), [I-11.)-
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Negative results

Theorem (Kadets-Martin-Soloviova, 2016)

If M is a geodesic space (in particular, M = [0, 1]) then
SNA(M) + Lipy(M).

Theorem (Cascales-Chiclana-GL-Martin-Rueda Zoca, 2019)

SNA(M) # Lipy(M) provided

e M is a length space (i.e. d(x,y) is the infimum of the length of
curves joining x and y, for every x,y).

@ M C R is closed and \(M) > 0.
o M=S'CR

Is there an equivalent distance d’ on [0, 1] such that
SNA([07 1]7 dl) = LIpO([Oa 1]7 dl)?

Let M C R” be a compact differential manifold, endowed with the metric
inherited from R". Do we have SNA(M) # Lipg(M)?
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Assume first that M = {0,a; ..., a,} is finite. We can identify
f=(f(a1),...,f(an)). Then
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BLipo(M)Z{f:<f, d(a;,aj)>glw7éj} (eg = 0)

and its polar is

o e&—¢€¢ ., .| _.
BLipo(M) = Conv{d(a;,aj) i ;éj} =: Br(m)

Now, let M be an arbitrary metric space. Given x € M, we denote
d(x) € Lipg(M)* the evaluation functional: (§(x), f) = f(x). The
Lipschitz-free space over M is defined as

F(M) :=span{d(x) : x € M} C Lipg(M)*

We have Br(y) = m{% X #y}
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@ M is a length space if and only if Bx(y) does not have strongly
exposed points. (Ivakhno-Kadets-Werner '09 + GL-Prochazka-Rueda
Zoca '18 + Avilés-Martinez Cervantes '19).

Conjecture

M is a geodesic space if and only if Br(ys) does not have extreme points
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Theorem (Godefroy, 2015)
Assume M is a compact metric space and lipg(M)* = F(M). Then

SNA(M) = Lipo(M).

The above condition holds if M is compact and countable, or compact and
Holder.
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Positive results

Theorem (GL-Petitjean-Prochdzka-Rueda Zoca, 2018)
Assume that F(M) has the Radon-Nikodym Property. Then

SNA(M) = Lipo(M).

A Banach space has the RNP if and only if every closed convex bounded
C C X satisfies C = conv(strexp C).

Every reflexive Banach space and every separable dual Banach space enjoy
the RNP.
The space F(M) has the RNP in the following cases:

e M is uniformly discrete (Kalton, 2004)

@ M is compact countable (Dalet, 2015)

@ M is compact Holder (Weaver, 1999)

@ M is a closed subset of R with measure 0 (Godard, 2010)
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We know that

o strexp Br(y) = 0 = M length space = SNA(M) is not dense.
e F(M) RNP = SNA(M) is dense.

@ The converse doesn't hold: there is a compact metric space M such

that SNA(M) = Lipy(M) but F(M) has the RNP.

A natural conjecture is the following:

Conjecture

SNA(M) = Lipg(M) if and only if Br(ps) = conv(strexp Br(u))-

Theorem (Chiclana-GL-Martin-Rueda Zoca, 2019)

Assume M is compact and SNA(M) = Lipg(M). Then
Br(my = conv(strexp Br(m)-

However, if M = S! C R? then Br(m) = conv(strexp Br(u))!
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Weak density

Theorem (Cascales-Chiclana-GL-Martin-Rueda Zoca)
SNA(M,R) is weakly sequentially dense in Lipy(M,R) J

@ This extends a result by
Kadets-Martin-Soloviova, who
proved that the same holds
when M is a length space.

@ The tool: (f,), C Lipy(M)
bounded with pairwise disjoint
supports = (fp)n is weakly null.
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