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(Lipg(M, Y),|I:|[,) is @ Banach space.
We say that f strongly attains its norm if

1£(x) = FW)l
d(x,y)

for some x,y € M. We denote SNA(M, Y') the set of such maps.

Problem (Godefroy, 2015)
What are the couples (M, Y') such that SNA(M, Y') = Lipg(M, Y)?
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Theorem (Kadets-Martin-Soloviova, 2016)
If M is geodesic (in particular, M = [0,1]) then SNA(M, R) # Lipy(M,R)

v

Theorem (Cascales-Chiclana-GL-Martin-Rueda Zoca, 2019)
SNA(M,R) # Lipg(M,R) provided
e M is a length space (i.e. d(x,y) is the infimum of the length of
curves joining x and y, for every x,y).
@ M C R is closed and A(M) > 0.
e M=S!'cR?

Is there an equivalent distance d’ on [0, 1] such that
SNA([Oa 1]7 dl) = LlpO([Ov 1]7 dl)?

Let M C R” be a compact differential manifold, endowed with the metric

inherited from R”. Do we have SNA(M) # Lipg(M)?
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Lipschitz-free spaces

Given x € M, we denote §(x) € Lipg(M,R)* the evaluation functional:
(0(x), f) = f(x).
The Lipschitz-free space over M is defined as

F(M) :=span{d(x) : x € M} C Lipy(M,R)*

Example
o F(N)=1/1 (0(n) — e1+ ...+ en).
o F([0,1]) = La([0,1]) (6(x) = X(0,6))-

Lipschitz-free spaces are also called Arens-Eells spaces, transportation cost
spaces and Wassertein 1 spaces.
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Extremal structure of Lipschitz-free spaces

a3

e~ A

a ay
M,
Theorem (Aliaga-Pernecka, 2019)
% is an extreme point Br ()
if and only if ! 1
d(x,y) < d(x,z) + d(z,y) for all al % as
zE M \ {Xay} y M2
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Propaganda: Volume product of metric spaces

In a preprint with M. Alexander, M. Fradelizi and A. Zvavitch, we

introduce P(M) := vol,(Bz(pm)) - voln(BlLip,(m)) Where M is a metric space
with n+ 1 points.

P(M) measures, in some sense, how far is M from being a tree.

Let M be a finite metric space with minimal volume product such that
Br(wm) is a simplicial polytope. Then M is a tree (and so P(M) = P(BY))

v

Let M be a finite metric space such that P(M) is maximal among the
metric spaces with the same number of elements. Then

e d(x,y) < d(x,z)+ d(z,y) for all different points x,y,z € M.
® Br(wm) is a simplicial polytope.
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Theorem (Godefroy, 2015)

Assume M is a compact metric space and lipg(M)* = F(M). Then
SNA(M, Y) = NA(F (M), Y) for all Y. Moreover, if Y is
finite-dimensional, then SNA(M, Y') = Lipy(M, Y).
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Positive results
Theorem (GL-Petitjean-Prochdzka-Rueda Zoca, 2018)
If F(M) has the RNP, then SNA(M, YY) = Lipg(M, Y) for every Y.

Proof.

e Bourgain, 1977: the set of operators in L(F (M), Y) which are
absolutely strongly exposing is a Gs dense.

@ Every absolutely strongly exposing operator attains its norm at a
strongly exposed point.

@ Weaver, 1995: every strongly exposed point of Bx(y) is of the form

8(x)=d(y)
d(xy) -

The space F(M) has the RNP in the following cases:
@ M is uniformly discrete (Kalton, 2004)
@ M is compact countable (Dalet, 2015)
@ M is compact Holder (Weaver, 1999)
@ M is a closed subset of R with measure 0 (Godard, 2010)
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it follow that F(M) = lipg(M)*?

Theorem (Chiclana-GL-Martin-Rueda Zoca, 2019)

There exists a compact metric space M such that F(M) fails the RNP
and SNA(M, Y) = Lipg(M, Y) for every Y.

Idea: (M) has property o, that is, there exist p > 0, {/t}yer C Sr(my, and
{fy yer C Stipy(m) such that
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By a result of Schachermayer (1983) we get that the set of operators in
L(F(M), Y) attaining their norm on {/i},er is dense. Each p., is strongly

~
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Assume that M is compact and F(M) has the RNP. Then SNA(M, Y)
contains an open dense subset.

Proof. For simplicity, let's take Y = R. Let

f(x)— f
A= {f € Lipg(M,R) : sup M< |f||, for some ¢ > 0}
d(x,y)<e d(Xay)

Clearly, A is open and A C SNA(M,R). Let us see that SNA(M,R) C A.

Take € > 0 and f such that f(zg;;()y) = |If||, =1 for some x,y € M.

By Aliaga-Pernecka, we may assume that % € ext(Br(m))-
Now, by Aliaga-Guirao and GL-Petitjean-Prochazka-Rueda Zoca,
(x) —d(y)

d(x,y)

€ ext(Br(my++) N F(M) = dent(Br(n))
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Assume that M is compact and F(M) has the RNP. Then SNA(M, Y)
contains an open dense subset.

Proof. Therefore, there is g € Sy, (v) and 8 > 0 such that

00-E0) ~ 1 — 8 and diam{p € Bry) : (1) > 1- B} <e.
Take h = f +eg. Then ||f — h|| = . We claim that h € A.
Note that
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Assume that M is compact and F(M) has the RNP. Then SNA(M, Y)
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Proof. Therefore, there is g € Sy, (v) and 8 > 0 such that

00-E0) ~ 1 — 8 and diam{p € Bry) : (1) > 1- B} <e.

Take h = f +eg. Then ||f — h|| = . We claim that h € A.
Note that

Il > 1+ £ > 11— )
Assume that h(u) — h(v)
Tayy )
Then 1+ 2(1— f) < 1 +€g(gz;€§v).
o (4525) > 1 amd s 45261 8540 < -

This implies that d(u,v) > (1 — 2¢)d(x, y), that is, h E A.
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Thank you for your attention J
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