On strongly norm attaining Lipschitz maps

Luis C. García-Lirola

Joint work with Bernardo Cascales, Rafael Chiclana, Miguel Martín and Abraham Rueda Zoca

Kent State University

Analysis Seminar University of Illinois at Urbana-Champaign December 17th, 2019

Agencia de Ciencia y Tecnología Región de Murcia

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIMDAD

 Cascales, B., R. Chiclana, L. García-Lirola, M. Martín, and A. Rueda Zoca. "On strongly norm attaining Lipschitz maps". In: J. of Funct. Anal. 277 (2019), pp. 1677–1717.
 Chiclana, D. L. C. Caraía Linda, M. Martín, and A. Bueda Zasa.

Chiclana, R., L. C. García-Lirola, M. Martín, and A. Rueda Zoca. "Examples and applications of strongly norm attaining Lipschitz maps". arXiv. 2019.

(M, d) complete metric space Y real Banach space

(M, d) complete metric space Y real Banach space

$$Lip_0(M, Y) := \{f \colon M \to Y : f \text{ is Lipschitz}$$

$$\|f\|_{L} := \sup\left\{\frac{\|f(x) - f(y)\|}{d(x, y)} : x \neq y\right\}.$$

}

$$\operatorname{Lip}_0(M, Y) := \{f \colon M \to Y : f \text{ is Lipschitz}, f(0) = 0\}$$

$$||f||_{L} := \sup \left\{ \frac{||f(x) - f(y)||}{d(x, y)} : x \neq y \right\}.$$

$$\operatorname{Lip}_{0}(M, Y) := \{f \colon M \to Y : f \text{ is Lipschitz}, f(0) = 0\}$$

$$||f||_L := \sup\left\{\frac{||f(x) - f(y)||}{d(x, y)} : x \neq y\right\}.$$

 $(\operatorname{Lip}_0(M, Y), \|\cdot\|_L)$ is a Banach space.

 $\operatorname{Lip}_{0}(M, Y) := \{f \colon M \to Y : f \text{ is Lipschitz}, f(0) = 0\}$

$$||f||_L := \sup \left\{ \frac{||f(x) - f(y)||}{d(x, y)} : x \neq y \right\}.$$

 $(\operatorname{Lip}_0(M, Y), \|\cdot\|_L)$ is a Banach space. We say that f strongly attains its norm if

$$||f||_{L} = \frac{||f(x) - f(y)||}{d(x, y)}$$

for some $x, y \in M$. We denote SNA(M, Y) the set of such maps.

$$\operatorname{Lip}_{0}(M, Y) := \{f \colon M \to Y : f \text{ is Lipschitz}, f(0) = 0\}$$

$$||f||_L := \sup \left\{ \frac{||f(x) - f(y)||}{d(x, y)} : x \neq y \right\}.$$

 $(\operatorname{Lip}_0(M, Y), \|\cdot\|_L)$ is a Banach space. We say that f strongly attains its norm if

$$||f||_{L} = \frac{||f(x) - f(y)||}{d(x, y)}$$

for some $x, y \in M$. We denote SNA(M, Y) the set of such maps.

Problem (Godefroy, 2015)

What are the couples (M, Y) such that $\overline{SNA(M, Y)} = Lip_0(M, Y)$?

Theorem (Kadets-Martín-Soloviova, 2016)

If M is geodesic (in particular, M = [0, 1]) then $\overline{SNA(M, \mathbb{R})} \neq Lip_0(M, \mathbb{R})$.

Theorem (Kadets-Martín-Soloviova, 2016)

If M is geodesic (in particular, M = [0, 1]) then $\overline{SNA(M, \mathbb{R})} \neq Lip_0(M, \mathbb{R})$.

Theorem (Cascales-Chiclana-GL-Martín-Rueda Zoca, 2019)

 $\overline{\mathsf{SNA}(M,\mathbb{R})} \neq \mathsf{Lip}_0(M,\mathbb{R})$ provided

• *M* is a length space (i.e. d(x, y) is the infimum of the length of curves joining x and y, for every x, y).

Theorem (Kadets-Martín-Soloviova, 2016)

If M is geodesic (in particular, M = [0, 1]) then $\overline{SNA(M, \mathbb{R})} \neq Lip_0(M, \mathbb{R})$.

Theorem (Cascales-Chiclana-GL-Martín-Rueda Zoca, 2019)

 $\overline{\mathsf{SNA}(M,\mathbb{R})} \neq \mathsf{Lip}_0(M,\mathbb{R})$ provided

• *M* is a length space (i.e. d(x, y) is the infimum of the length of curves joining x and y, for every x, y).

• $M \subset \mathbb{R}$ is closed and $\lambda(M) > 0$.

Theorem (Kadets-Martín-Soloviova, 2016)

If M is geodesic (in particular, M = [0, 1]) then $\overline{SNA(M, \mathbb{R})} \neq Lip_0(M, \mathbb{R})$.

Theorem (Cascales-Chiclana-GL-Martín-Rueda Zoca, 2019)

 $\overline{\mathsf{SNA}(M,\mathbb{R})} \neq \mathsf{Lip}_0(M,\mathbb{R})$ provided

- *M* is a length space (i.e. d(x, y) is the infimum of the length of curves joining x and y, for every x, y).
- $M \subset \mathbb{R}$ is closed and $\lambda(M) > 0$.
- $M = \mathbb{S}^1 \subset \mathbb{R}^2$.

Theorem (Kadets-Martín-Soloviova, 2016)

If M is geodesic (in particular, M = [0, 1]) then $\overline{SNA(M, \mathbb{R})} \neq Lip_0(M, \mathbb{R})$.

Theorem (Cascales-Chiclana-GL-Martín-Rueda Zoca, 2019)

 $\overline{\mathsf{SNA}(M,\mathbb{R})} \neq \mathsf{Lip}_0(M,\mathbb{R})$ provided

- *M* is a length space (i.e. d(x, y) is the infimum of the length of curves joining x and y, for every x, y).
- $M \subset \mathbb{R}$ is closed and $\lambda(M) > 0$.
- $M = \mathbb{S}^1 \subset \mathbb{R}^2$.

Is there an equivalent distance d' on [0, 1] such that $\overline{SNA([0, 1], d')} = Lip_0([0, 1], d')$?

Theorem (Kadets-Martín-Soloviova, 2016)

If M is geodesic (in particular, M = [0, 1]) then $\overline{SNA(M, \mathbb{R})} \neq Lip_0(M, \mathbb{R})$.

Theorem (Cascales-Chiclana-GL-Martín-Rueda Zoca, 2019)

 $\overline{\mathsf{SNA}(M,\mathbb{R})} \neq \mathsf{Lip}_0(M,\mathbb{R})$ provided

- *M* is a length space (i.e. d(x, y) is the infimum of the length of curves joining x and y, for every x, y).
- $M \subset \mathbb{R}$ is closed and $\lambda(M) > 0$.
- $M = \mathbb{S}^1 \subset \mathbb{R}^2$.

Is there an equivalent distance d' on [0,1] such that $\overline{SNA([0,1],d')} = Lip_0([0,1],d')$?

Let $M \subset \mathbb{R}^n$ be a compact differential manifold, endowed with the metric inherited from \mathbb{R}^n . Do we have $\overline{SNA(M)} \neq Lip_0(M)$?

Given $x \in M$, we denote $\delta(x) \in Lip_0(M, \mathbb{R})^*$ the evaluation functional:

$$\langle \delta(\mathbf{x}), f \rangle = f(\mathbf{x}).$$

Given $x \in M$, we denote $\delta(x) \in Lip_0(M, \mathbb{R})^*$ the evaluation functional:

$$\langle \delta(\mathbf{x}), f \rangle = f(\mathbf{x}).$$

The Lipschitz-free space over M is defined as

$$\mathcal{F}(M) := \overline{\operatorname{span}} \{ \delta(x) : x \in M \} \subset \operatorname{Lip}_0(M, \mathbb{R})^*$$

Given $x \in M$, we denote $\delta(x) \in Lip_0(M, \mathbb{R})^*$ the evaluation functional:

$$\langle \delta(\mathbf{x}), f \rangle = f(\mathbf{x}).$$

The Lipschitz-free space over M is defined as

$$\mathcal{F}(M) := \overline{\operatorname{span}} \{ \delta(x) : x \in M \} \subset \operatorname{Lip}_0(M, \mathbb{R})^*$$

Example

•
$$\mathcal{F}(\mathbb{N}) = \ell_1 \ (\delta(n) \mapsto e_1 + \ldots + e_n).$$

• $\mathcal{F}([0,1]) = L_1([0,1]) \ (\delta(x) \mapsto \chi_{(0,x)}).$

Given $x \in M$, we denote $\delta(x) \in Lip_0(M, \mathbb{R})^*$ the evaluation functional:

$$\langle \delta(\mathbf{x}), f \rangle = f(\mathbf{x}).$$

The Lipschitz-free space over M is defined as

$$\mathcal{F}(M) := \overline{\operatorname{span}} \{ \delta(x) : x \in M \} \subset \operatorname{Lip}_0(M, \mathbb{R})^*$$

Example

•
$$\mathcal{F}(\mathbb{N}) = \ell_1 \ (\delta(n) \mapsto e_1 + \ldots + e_n).$$

• $\mathcal{F}([0,1]) = L_1([0,1]) \ (\delta(x) \mapsto \chi_{(0,x)}).$

Lipschitz-free spaces are also called *Arens-Eells spaces*, *transportation cost spaces* and *Wassertein 1 spaces*.

Extremal structure of Lipschitz-free spaces

Extremal structure of Lipschitz-free spaces

$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}} \left\{ \frac{\delta(x) - \delta(y)}{d(x, y)} : i \neq j \right\}$$
Theorem (Aliaga-Pernecká, 2019)
$$\frac{\delta(x) - \delta(y)}{d(x, y)} \text{ is an extreme point } B_{\mathcal{F}(M)}$$
if and only if
$$d(x, y) < d(x, z) + d(z, y) \text{ for all}$$

$$z \in M \setminus \{x, y\}$$

$$B_{\mathcal{F}(M_1)}$$

Propaganda: Volume product of metric spaces

In a preprint with M. Alexander, M. Fradelizi and A. Zvavitch, we introduce $\mathcal{P}(M) := \operatorname{vol}_n(B_{\mathcal{F}(M)}) \cdot \operatorname{vol}_n(B_{\operatorname{Lip}_0(M)})$ where M is a metric space with n + 1 points.

 $\mathcal{P}(M)$ measures, in some sense, how far is M from being a tree.

Propaganda: Volume product of metric spaces

In a preprint with M. Alexander, M. Fradelizi and A. Zvavitch, we introduce $\mathcal{P}(M) := \operatorname{vol}_n(B_{\mathcal{F}(M)}) \cdot \operatorname{vol}_n(B_{\operatorname{Lip}_0(M)})$ where M is a metric space with n + 1 points.

 $\mathcal{P}(M)$ measures, in some sense, how far is M from being a tree.

Let *M* be a finite metric space with minimal volume product such that $B_{\mathcal{F}(M)}$ is a simplicial polytope. Then *M* is a tree (and so $\mathcal{P}(M) = \mathcal{P}(B_1^n)$).

Let M be a finite metric space such that $\mathcal{P}(M)$ is maximal among the metric spaces with the same number of elements. Then

- d(x,y) < d(x,z) + d(z,y) for all different points $x, y, z \in M$.
- $B_{\mathcal{F}(M)}$ is a simplicial polytope.

Note that, if f strongly attains its norm at $x, y \in M$, then

$$\left\|f\right\|_{L} = \frac{\left\|f(x) - f(y)\right\|}{d(x, y)} = \left\|\hat{f}\left(\frac{\delta(x) - \delta(y)}{d(x, y)}\right)\right\|,$$

that is, \hat{f} attains its operator norm. Therefore

$$\mathsf{SNA}(M, Y) \subset \mathsf{NA}(\mathcal{F}(M), Y)$$

Note that, if f strongly attains its norm at $x, y \in M$, then

$$\left\|f\right\|_{L} = \frac{\left\|f(x) - f(y)\right\|}{d(x, y)} = \left\|\hat{f}\left(\frac{\delta(x) - \delta(y)}{d(x, y)}\right)\right\|,$$

that is, \hat{f} attains its operator norm. Therefore

 $SNA(M, Y) \subset NA(\mathcal{F}(M), Y)$

Note that $SNA([0,1],\mathbb{R}) \neq NA(\mathcal{F}([0,1]),\mathbb{R}).$

Note that, if f strongly attains its norm at $x, y \in M$, then

$$\|f\|_{L} = \frac{\|f(x) - f(y)\|}{d(x, y)} = \left\|\hat{f}\left(\frac{\delta(x) - \delta(y)}{d(x, y)}\right)\right\|,$$

that is, \hat{f} attains its operator norm. Therefore

$$\mathsf{SNA}(M, Y) \subset \mathsf{NA}(\mathcal{F}(M), Y)$$

Note that $SNA([0,1],\mathbb{R}) \neq NA(\mathcal{F}([0,1]),\mathbb{R}).$

Theorem (Godefroy, 2015)

Assume M is a compact metric space and $lip_0(M)^* = \mathcal{F}(M)$. Then $SNA(M, Y) = NA(\mathcal{F}(M), Y)$ for all Y. Moreover, if Y is finite-dimensional, then $SNA(M, Y) = Lip_0(M, Y)$.

Theorem (GL-Petitjean-Procházka-Rueda Zoca, 2018)

If $\mathcal{F}(M)$ has the RNP, then $\overline{SNA(M, Y)} = Lip_0(M, Y)$ for every Y.

Theorem (GL-Petitjean-Procházka-Rueda Zoca, 2018)

If $\mathcal{F}(M)$ has the RNP, then $\overline{SNA(M, Y)} = Lip_0(M, Y)$ for every Y.

Proof.

• Bourgain, 1977: the set of operators in $\mathcal{L}(\mathcal{F}(M), Y)$ which are absolutely strongly exposing is a G_{δ} dense.

Theorem (GL-Petitjean-Procházka-Rueda Zoca, 2018)

If $\mathcal{F}(M)$ has the RNP, then $\overline{SNA(M, Y)} = Lip_0(M, Y)$ for every Y.

Proof.

- Bourgain, 1977: the set of operators in $\mathcal{L}(\mathcal{F}(M), Y)$ which are absolutely strongly exposing is a G_{δ} dense.
- Every absolutely strongly exposing operator attains its norm at a strongly exposed point.

Theorem (GL-Petitjean-Procházka-Rueda Zoca, 2018)

If $\mathcal{F}(M)$ has the RNP, then $\overline{SNA(M, Y)} = Lip_0(M, Y)$ for every Y.

Proof.

- Bourgain, 1977: the set of operators in $\mathcal{L}(\mathcal{F}(M), Y)$ which are absolutely strongly exposing is a G_{δ} dense.
- Every absolutely strongly exposing operator attains its norm at a strongly exposed point.
- Weaver, 1995: every strongly exposed point of $B_{\mathcal{F}(M)}$ is of the form $\frac{\delta(x)-\delta(y)}{d(x,y)}$.

Theorem (GL-Petitjean-Procházka-Rueda Zoca, 2018)

If $\mathcal{F}(M)$ has the RNP, then $\overline{SNA(M, Y)} = Lip_0(M, Y)$ for every Y.

Proof.

- Bourgain, 1977: the set of operators in $\mathcal{L}(\mathcal{F}(M), Y)$ which are absolutely strongly exposing is a G_{δ} dense.
- Every absolutely strongly exposing operator attains its norm at a strongly exposed point.
- Weaver, 1995: every strongly exposed point of $B_{\mathcal{F}(M)}$ is of the form $\frac{\delta(x)-\delta(y)}{d(x,y)}$.

The space $\mathcal{F}(M)$ has the RNP in the following cases:

- *M* is uniformly discrete (Kalton, 2004)
- *M* is compact countable (Dalet, 2015)
- *M* is compact Hölder (Weaver, 1999)
- M is a closed subset of \mathbb{R} with measure 0 (Godard, 2010)

Assume that M is compact and $SNA(M, \mathbb{R})$ is dense in $Lip_0(M, \mathbb{R})$. Does it follow that $\mathcal{F}(M) = lip_0(M)^*$?

Assume that M is compact and $SNA(M, \mathbb{R})$ is dense in $Lip_0(M, \mathbb{R})$. Does it follow that $\mathcal{F}(M) = lip_0(M)^*$?

Theorem (Chiclana-GL-Martín-Rueda Zoca, 2019)

There exists a compact metric space M such that $\mathcal{F}(M)$ fails the RNP and $\overline{SNA(M, Y)} = Lip_0(M, Y)$ for every Y.

Assume that M is compact and $SNA(M, \mathbb{R})$ is dense in $Lip_0(M, \mathbb{R})$. Does it follow that $\mathcal{F}(M) = lip_0(M)^*$?

Theorem (Chiclana-GL-Martín-Rueda Zoca, 2019)

There exists a compact metric space M such that $\mathcal{F}(M)$ fails the RNP and $\overline{SNA(M, Y)} = Lip_0(M, Y)$ for every Y.

Idea: $\mathcal{F}(M)$ has property α , that is, there exist $\rho > 0$, $\{\mu_{\gamma}\}_{\gamma \in \Gamma} \subset S_{\mathcal{F}(M)}$, and $\{f_{\gamma}\}_{\gamma \in \Gamma} \subset S_{\text{Lip}_0(M)}$ such that

•
$$|\langle \hat{f}_{\gamma}, \mu_{\gamma}
angle| = 1$$
 for all γ ,

•
$$|\langle \hat{f}_{\gamma}, \mu_{\gamma'} \rangle| \leq
ho$$
 if $\gamma' \neq \gamma$,

•
$$B_{\mathcal{F}(M)} = \overline{\operatorname{aconv}}(\{\mu_{\gamma}\}_{\gamma \in \Gamma}).$$

By a result of Schachermayer (1983) we get that the set of operators in $\mathcal{L}(\mathcal{F}(M), Y)$ attaining their norm on $\overline{\{\mu_{\gamma}\}_{\gamma \in \Gamma}}$ is dense.

Assume that M is compact and $SNA(M, \mathbb{R})$ is dense in $Lip_0(M, \mathbb{R})$. Does it follow that $\mathcal{F}(M) = lip_0(M)^*$?

Theorem (Chiclana-GL-Martín-Rueda Zoca, 2019)

There exists a compact metric space M such that $\mathcal{F}(M)$ fails the RNP and $\overline{SNA(M, Y)} = Lip_0(M, Y)$ for every Y.

Idea: $\mathcal{F}(M)$ has property α , that is, there exist $\rho > 0$, $\{\mu_{\gamma}\}_{\gamma \in \Gamma} \subset S_{\mathcal{F}(M)}$, and $\{f_{\gamma}\}_{\gamma \in \Gamma} \subset S_{\text{Lip}_0(M)}$ such that

•
$$|\langle \hat{f}_{\gamma}, \mu_{\gamma}
angle| = 1$$
 for all γ ,

•
$$|\langle \hat{f}_{\gamma}, \mu_{\gamma'} \rangle| \leq
ho$$
 if $\gamma' \neq \gamma$,

•
$$B_{\mathcal{F}(M)} = \overline{\operatorname{aconv}}(\{\mu_{\gamma}\}_{\gamma \in \Gamma}).$$

By a result of Schachermayer (1983) we get that the set of operators in $\mathcal{L}(\mathcal{F}(M), Y)$ attaining their norm on $\overline{\{\mu_{\gamma}\}_{\gamma \in \Gamma}}$ is dense. Each μ_{γ} is strongly exposed by \hat{f}_{γ} , so

$$\overline{\{\mu_{\gamma}\}_{\gamma\in\Gamma}} \subset \overline{\left\{\frac{\delta(x)-\delta(y)}{d(x,y)}: x\neq y\right\}} = \left\{\frac{\delta(x)-\delta(y)}{d(x,y)}: x\neq y\right\}$$

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. For simplicity, let's take $Y = \mathbb{R}$. Let

$$A = \{ f \in \operatorname{Lip}_{0}(M, \mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_{L} \text{ for some } \varepsilon > 0 \}$$

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. For simplicity, let's take $Y = \mathbb{R}$. Let

$$A = \{ f \in \operatorname{Lip}_{0}(M, \mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_{L} \text{ for some } \varepsilon > 0 \}$$

Clearly, A is open and $A \subset SNA(M, \mathbb{R})$. Let us see that $SNA(M, \mathbb{R}) \subset \overline{A}$.

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. For simplicity, let's take $Y = \mathbb{R}$. Let

$$A = \{ f \in \operatorname{Lip}_{0}(M, \mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_{L} \text{ for some } \varepsilon > 0 \}$$

Clearly, A is open and $A \subset SNA(M, \mathbb{R})$. Let us see that $SNA(M, \mathbb{R}) \subset \overline{A}$. Take $\varepsilon > 0$ and f such that $\frac{f(x) - f(y)}{d(x,y)} = \|f\|_L = 1$ for some $x, y \in M$.

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. For simplicity, let's take $Y = \mathbb{R}$. Let

$$A = \{ f \in \operatorname{Lip}_{0}(M, \mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_{L} \text{ for some } \varepsilon > 0 \}$$

Clearly, A is open and $A \subset SNA(M, \mathbb{R})$. Let us see that $SNA(M, \mathbb{R}) \subset \overline{A}$. Take $\varepsilon > 0$ and f such that $\frac{f(x)-f(y)}{d(x,y)} = \|f\|_L = 1$ for some $x, y \in M$. By Aliaga-Pernecká, we may assume that $\frac{\delta(x)-\delta(y)}{d(x,y)} \in ext(B_{\mathcal{F}(M)})$.

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. For simplicity, let's take $Y = \mathbb{R}$. Let

$$A = \{ f \in \operatorname{Lip}_{0}(M, \mathbb{R}) : \sup_{d(x,y) < \varepsilon} \frac{f(x) - f(y)}{d(x,y)} < \|f\|_{L} \text{ for some } \varepsilon > 0 \}$$

Clearly, A is open and $A \subset SNA(M, \mathbb{R})$. Let us see that $SNA(M, \mathbb{R}) \subset \overline{A}$. Take $\varepsilon > 0$ and f such that $\frac{f(x)-f(y)}{d(x,y)} = \|f\|_L = 1$ for some $x, y \in M$. By Aliaga-Pernecká, we may assume that $\frac{\delta(x)-\delta(y)}{d(x,y)} \in ext(B_{\mathcal{F}(M)})$. Now, by Aliaga-Guirao and GL-Petitjean-Procházka-Rueda Zoca,

$$\frac{\delta(x) - \delta(y)}{d(x,y)} \in \mathsf{ext}(\mathcal{B}_{\mathcal{F}(\mathcal{M})^{**}}) \cap \mathcal{F}(\mathcal{M}) = \mathsf{dent}(\mathcal{B}_{\mathcal{F}(\mathcal{M})})$$

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x)-g(y)}{d(x,y)} > 1 - \beta$ and $\text{diam}\{\mu \in B_{\mathcal{F}(M)} : \hat{g}(\mu) > 1 - \beta\} < \varepsilon$.

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x)-g(y)}{d(x,y)} > 1 - \beta$ and $\text{diam}\{\mu \in B_{\mathcal{F}(M)} : \hat{g}(\mu) > 1 - \beta\} < \varepsilon$. Take $h = f + \varepsilon g$. Then $||f - h|| = \varepsilon$. We claim that $h \in A$.

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x)-g(y)}{d(x,y)} > 1 - \beta$ and $\text{diam}\{\mu \in B_{\mathcal{F}(M)} : \hat{g}(\mu) > 1 - \beta\} < \varepsilon$. Take $h = f + \varepsilon g$. Then $||f - h|| = \varepsilon$. We claim that $h \in A$. Note that

$$\|h\|_{L} \geq 1 + \varepsilon \frac{g(x) - g(y)}{d(x, y)} > 1 + \varepsilon (1 - \beta).$$

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x)-g(y)}{d(x,y)} > 1 - \beta$ and $\dim\{\mu \in B_{\mathcal{F}(M)} : \hat{g}(\mu) > 1 - \beta\} < \varepsilon$. Take $h = f + \varepsilon g$. Then $||f - h|| = \varepsilon$. We claim that $h \in A$. Note that

$$\|h\|_{L} \geq 1 + \varepsilon \frac{g(x) - g(y)}{d(x, y)} > 1 + \varepsilon (1 - \beta).$$

Assume that

$$\frac{h(u)-h(v)}{d(u,v)}>1+\varepsilon(1-\beta)$$

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x)-g(y)}{d(x,y)} > 1 - \beta$ and $\text{diam}\{\mu \in B_{\mathcal{F}(M)} : \hat{g}(\mu) > 1 - \beta\} < \varepsilon$. Take $h = f + \varepsilon g$. Then $||f - h|| = \varepsilon$. We claim that $h \in A$. Note that

$$\|h\|_{L} \geq 1 + \varepsilon \frac{g(x) - g(y)}{d(x, y)} > 1 + \varepsilon (1 - \beta).$$

Assume that

$$\frac{h(u)-h(v)}{d(u,v)} > 1 + \varepsilon(1-\beta)$$

Then $1 + \varepsilon(1 - \beta) < 1 + \varepsilon \frac{g(u) - g(v)}{d(u,v)}$.

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x)-g(y)}{d(x,y)} > 1 - \beta$ and $\text{diam}\{\mu \in B_{\mathcal{F}(M)} : \hat{g}(\mu) > 1 - \beta\} < \varepsilon$. Take $h = f + \varepsilon g$. Then $||f - h|| = \varepsilon$. We claim that $h \in A$. Note that

$$\|h\|_{L} \geq 1 + \varepsilon \frac{g(x) - g(y)}{d(x, y)} > 1 + \varepsilon (1 - \beta).$$

Assume that

$$rac{h(u)-h(v)}{d(u,v)}>1+arepsilon(1-eta)$$

Then
$$1 + \varepsilon(1 - \beta) < 1 + \varepsilon \frac{g(u) - g(v)}{d(u, v)}$$
.
So, $\hat{g}\left(\frac{\delta(u) - \delta(v)}{d(u, v)}\right) > 1 - \beta$ and thus $\left\|\frac{\delta(u) - \delta(v)}{d(u, v)} - \frac{\delta(x) - \delta(y)}{d(x, y)}\right\| < \varepsilon$.

Assume that M is compact and $\mathcal{F}(M)$ has the RNP. Then SNA(M, Y) contains an **open** dense subset.

Proof. Therefore, there is $g \in S_{\text{Lip}_0(M)}$ and $\beta > 0$ such that $\frac{g(x)-g(y)}{d(x,y)} > 1 - \beta$ and $\text{diam}\{\mu \in B_{\mathcal{F}(M)} : \hat{g}(\mu) > 1 - \beta\} < \varepsilon$. Take $h = f + \varepsilon g$. Then $||f - h|| = \varepsilon$. We claim that $h \in A$. Note that

$$\|h\|_{L} \geq 1 + \varepsilon \frac{g(x) - g(y)}{d(x, y)} > 1 + \varepsilon (1 - \beta).$$

Assume that

$$rac{h(u)-h(v)}{d(u,v)}>1+arepsilon(1-eta)$$

Then
$$1 + \varepsilon(1 - \beta) < 1 + \varepsilon \frac{g(u) - g(v)}{d(u, v)}$$
.
So, $\hat{g}\left(\frac{\delta(u) - \delta(v)}{d(u, v)}\right) > 1 - \beta$ and thus $\left\|\frac{\delta(u) - \delta(v)}{d(u, v)} - \frac{\delta(x) - \delta(y)}{d(x, y)}\right\| < \varepsilon$.
This implies that $d(u, v) \ge (1 - 2\varepsilon)d(x, y)$, that is, $h \in A$.

Theorem (Cascales-Chiclana-GL-Martín-Rueda Zoca)

 $SNA(M, \mathbb{R})$ is weakly sequentially dense in $Lip_0(M, \mathbb{R})$

Theorem (Cascales-Chiclana-GL-Martín-Rueda Zoca)

 $SNA(M, \mathbb{R})$ is weakly sequentially dense in $Lip_0(M, \mathbb{R})$

 This extends a result by Kadets-Martín-Soloviova, who proved that the same holds when *M* is a length space.

Theorem (Cascales-Chiclana-GL-Martín-Rueda Zoca) SNA(M, \mathbb{R}) is weakly sequentially dense in Lip₀(M, \mathbb{R})

- This extends a result by Kadets-Martín-Soloviova, who proved that the same holds when *M* is a length space.
- The tool: (f_n)_n ⊂ Lip₀(M) bounded with pairwise disjoint supports ⇒ (f_n)_n is weakly null.

Theorem (Cascales-Chiclana-GL-Martín-Rueda Zoca) SNA(M, \mathbb{R}) is weakly sequentially dense in Lip₀(M, \mathbb{R})

- This extends a result by Kadets-Martín-Soloviova, who proved that the same holds when *M* is a length space.
- The tool: (f_n)_n ⊂ Lip₀(M) bounded with pairwise disjoint supports ⇒ (f_n)_n is weakly null.

Thank you for your attention