Norm-attainment in projective tensor products

Luis C. García-Lirola

Joint works with S. Dantas, J. Guerrero-Viu, M. Jung, A. Rueda Zoca

Universidad de Zaragoza

Analysis, PDE and Probability seminar - KIAS seminar 20th December, 2024

f SéNeCa⁽⁺⁾

Agencia de Ciencia y Tecnología Región de Murcia

- S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca. Norm-attaining tensors and nuclear operators. *Mediterr. J. Math.* 19 (2022), no. 1, Paper No. 38, 27 pp.
- S. Dantas, L. C. García-Lirola, M. Jung, A. Rueda Zoca. On norm-attainment in (symmetric) tensor products. *Quaest. Math.* 46 (2023), no. 2, 393–409.
- L. C. García-Lirola, J. Guerrero-Viu, A. Rueda Zoca. Projective tensor products where every element is norm-attaining. arXiv:2407.10710

Outline

- Tensor products
- Projective tensor products where every tensor attains its norm
- Denseness of norm-attaining tensors

X, Y, Z = vector spaces

A map $A: X \times Y \rightarrow Z$ is **bilinear** if

•
$$A(\alpha x + \beta x', y) = \alpha A(x, y) + \beta A(x', y)$$

•
$$A(x, \alpha y + \beta y') = \alpha A(x, y) + \beta A(x, y')$$

 $B(X \times Y, Z)$ denotes the space of bilinear maps $A: X \times Y \rightarrow Z$

X, Y, Z = vector spaces

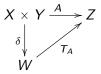
A map $A: X \times Y \rightarrow Z$ is **bilinear** if

•
$$A(\alpha x + \beta x', y) = \alpha A(x, y) + \beta A(x', y)$$

•
$$A(x, \alpha y + \beta y') = \alpha A(x, y) + \beta A(x, y')$$

 $B(X \times Y, Z)$ denotes the space of bilinear maps $A: X \times Y \rightarrow Z$

We would like to **linearize** bilinear maps. That is, to find a vector space W and a linear embedding $\delta \colon X \times Y \to W$ such that for any $A \in B(X \times Y, Z)$ there is a linear map $T_A \colon W \to Z$ such that this diagram commutes:



Given $x \in X$ and $y \in Y$, consider the linear functional

$$x \otimes y \colon B(X \times Y, \mathbb{R}) \to \mathbb{R}$$

 $A \mapsto A(x, y)$

The **tensor product** $X \otimes Y$ is defined as

 $X \otimes Y = \operatorname{span}\{x \otimes y : x \in X, y \in Y\} \subset B(X \times Y, \mathbb{R})^{\#}$

Given $x \in X$ and $y \in Y$, consider the linear functional

$$x \otimes y \colon B(X \times Y, \mathbb{R}) \to \mathbb{R}$$

 $A \mapsto A(x, y)$

The **tensor product** $X \otimes Y$ is defined as

 $X \otimes Y = \operatorname{span}\{x \otimes y : x \in X, y \in Y\} \subset B(X \times Y, \mathbb{R})^{\#}$

A **tensor** $u \in X \otimes Y$ has the form $u = \sum_{i=1}^{n} x_i \otimes y_i$ where $x_i \in X$ and $y_i \in Y$.

Given $x \in X$ and $y \in Y$, consider the linear functional

$$x \otimes y \colon B(X \times Y, \mathbb{R}) \to \mathbb{R}$$

 $A \mapsto A(x, y)$

The **tensor product** $X \otimes Y$ is defined as

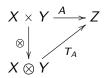
 $X \otimes Y = \operatorname{span}\{x \otimes y : x \in X, y \in Y\} \subset B(X \times Y, \mathbb{R})^{\#}$

A **tensor** $u \in X \otimes Y$ has the form $u = \sum_{i=1}^{n} x_i \otimes y_i$ where $x_i \in X$ and $y_i \in Y$. This representation is **NOT UNIQUE**. Indeed,

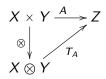
•
$$(\alpha x + \beta x') \otimes y = \alpha x \otimes y + \beta x' \otimes y.$$

•
$$x \otimes (\alpha y + \beta y') = \alpha x \otimes y + \beta x \otimes y'$$

Define \otimes : $X \times Y \to X \otimes Y$ by $\otimes(x, y) = x \otimes y$.



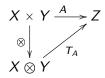
Define \otimes : $X \times Y \rightarrow X \otimes Y$ by $\otimes(x, y) = x \otimes y$.



Given $A \in B(X \times Y, Z)$, define

$$T_A(\sum_{i=1}^n x_i \otimes y_i) = \sum_{i=1}^n A(x_i, y_i).$$

Define \otimes : $X \times Y \rightarrow X \otimes Y$ by $\otimes(x, y) = x \otimes y$.



Given $A \in B(X \times Y, Z)$, define

$$T_A(\sum_{i=1}^n x_i \otimes y_i) = \sum_{i=1}^n A(x_i, y_i).$$

Conversely, if $T: X \otimes Y \rightarrow Z$ is linear, define $A \in B(X \times Y, Z)$ by

$$A(x,y) = T(x \otimes y).$$

X, Y = Banach spaces. We would like to define a norm on $X \otimes Y$.

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

 $\|x \otimes y\| \leqslant \|x\| \cdot \|y\|$

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

 $\|x \otimes y\| \leq \|x\| \cdot \|y\|$

If $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \otimes Y$, it must be $||u|| \leq \sum_{i=1}^{n} ||x_i|| ||y_i||$ and this should hold for every representation of u.

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

 $\|x \otimes y\| \leqslant \|x\| \cdot \|y\|$

If $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \otimes Y$, it must be $||u|| \leq \sum_{i=1}^{n} ||x_i|| ||y_i||$ and this should hold for every representation of u.

Given $u \in X \otimes Y$, we define the **projective norm** as follows

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{n} ||x_i|| ||y_i|| : u = \sum_{i=1}^{n} x_i \otimes y_i \right\}$$

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

 $\|x \otimes y\| \leqslant \|x\| \cdot \|y\|$

If $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \otimes Y$, it must be $||u|| \leq \sum_{i=1}^{n} ||x_i|| ||y_i||$ and this should hold for every representation of u.

Given $u \in X \otimes Y$, we define the **projective norm** as follows

$$\|u\|_{\pi} = \inf \left\{ \sum_{i=1}^{n} \|x_i\| \|y_i\| : u = \sum_{i=1}^{n} x_i \otimes y_i \right\}$$

However, $(X \otimes Y, \|\cdot\|_{\pi})$ is not complete unless X or Y is finite dimensional.

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

 $\|x \otimes y\| \leqslant \|x\| \cdot \|y\|$

If $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \otimes Y$, it must be $||u|| \leq \sum_{i=1}^{n} ||x_i|| ||y_i||$ and this should hold for every representation of u.

Given $u \in X \otimes Y$, we define the **projective norm** as follows

$$\|u\|_{\pi} = \inf \left\{ \sum_{i=1}^{n} \|x_i\| \|y_i\| : u = \sum_{i=1}^{n} x_i \otimes y_i \right\}$$

However, $(X \otimes Y, \|\cdot\|_{\pi})$ is not complete unless X or Y is finite dimensional.

The **projective tensor product** $X \widehat{\otimes}_{\pi} Y$ is the completion of $(X \otimes Y, \|\cdot\|_{\pi})$.

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

 $\|x \otimes y\| \leq \|x\| \cdot \|y\|$

If $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \otimes Y$, it must be $||u|| \leq \sum_{i=1}^{n} ||x_i|| ||y_i||$ and this should hold for every representation of u.

Given $u \in X \otimes Y$, we define the **projective norm** as follows

$$\|u\|_{\pi} = \inf \left\{ \sum_{i=1}^{n} \|x_i\| \|y_i\| : u = \sum_{i=1}^{n} x_i \otimes y_i \right\}$$

However, $(X \otimes Y, \|\cdot\|_{\pi})$ is not complete unless X or Y is finite dimensional.

The **projective tensor product** $X \widehat{\otimes}_{\pi} Y$ is the completion of $(X \otimes Y, \|\cdot\|_{\pi})$.

 $L_1(\mu)\widehat{\otimes}_{\pi} X = L_1(\mu, X)$

A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there is C > 0 such that

 $\|A(x,y)\| \leq C \|x\| \|y\|, \quad \forall x \in X, y \in Y.$

 $\mathcal{B}(X \times Y, Z)$ denotes the Banach space of bounded bilinear mappings with the norm $||A|| = \sup\{||A(x, y)|| : ||x|| \le 1, ||y|| \le 1\}.$

A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there is C > 0 such that

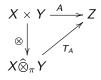
 $\|A(x,y)\| \leq C \|x\| \|y\|, \quad \forall x \in X, y \in Y.$

 $\mathcal{B}(X \times Y, Z)$ denotes the Banach space of bounded bilinear mappings with the norm $||A|| = \sup\{||A(x, y)|| : ||x|| \le 1, ||y|| \le 1\}$. $\mathcal{B}(X \times Y, \mathbb{R}) = \mathcal{L}(X, Y^*)$ (given $A \in \mathcal{B}(X \times Y, \mathbb{R})$, define $\tilde{A}(x)(y) = A(x, y)$).

A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there is C > 0 such that

 $\|A(x,y)\| \leq C \|x\| \|y\|, \quad \forall x \in X, y \in Y.$

 $\mathcal{B}(X \times Y, Z)$ denotes the Banach space of bounded bilinear mappings with the norm $||A|| = \sup\{||A(x, y)|| : ||x|| \le 1, ||y|| \le 1\}$. $\mathcal{B}(X \times Y, \mathbb{R}) = \mathcal{L}(X, Y^*)$ (given $A \in \mathcal{B}(X \times Y, \mathbb{R})$, define $\tilde{A}(x)(y) = A(x, y)$).



A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there is C > 0 such that

 $\|A(x,y)\| \leq C \|x\| \|y\|, \quad \forall x \in X, y \in Y.$

 $\mathcal{B}(X \times Y, Z)$ denotes the Banach space of bounded bilinear mappings with the norm $||A|| = \sup\{||A(x, y)|| : ||x|| \le 1, ||y|| \le 1\}$. $\mathcal{B}(X \times Y, \mathbb{R}) = \mathcal{L}(X, Y^*)$ (given $A \in \mathcal{B}(X \times Y, \mathbb{R})$, define $\tilde{A}(x)(y) = A(x, y)$).

 $\mathcal{B}(X \times Y, Z) = \mathcal{L}(X \widehat{\otimes}_{\pi} Y, Z)$ $\mathcal{B}(X \times Y, \mathbb{R}) = \mathcal{L}(X, Y^*) = (X \widehat{\otimes}_{\pi} Y)^*$

A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there is C > 0 such that

 $\|A(x,y)\| \leq C \|x\| \|y\|, \quad \forall x \in X, y \in Y.$

 $\mathcal{B}(X \times Y, Z)$ denotes the Banach space of bounded bilinear mappings with the norm $||A|| = \sup\{||A(x, y)|| : ||x|| \le 1, ||y|| \le 1\}$. $\mathcal{B}(X \times Y, \mathbb{R}) = \mathcal{L}(X, Y^*)$ (given $A \in \mathcal{B}(X \times Y, \mathbb{R})$, define $\tilde{A}(x)(y) = A(x, y)$).

 $\mathcal{B}(X \times Y, Z) = \mathcal{L}(X \widehat{\otimes}_{\pi} Y, Z)$ $\mathcal{B}(X \times Y, \mathbb{R}) = \mathcal{L}(X, Y^*) = (X \widehat{\otimes}_{\pi} Y)^*$

Since $||A|| = \sup\{\langle A, x \otimes y \rangle : x \in B_X, y \in B_Y\}$, it follows that $B_{X \otimes_{\pi} Y} = \overline{\operatorname{conv}}(B_X \otimes B_Y)$.

Every $u \in X \widehat{\otimes}_{\pi} Y$ can be written as $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ with $x_i \in X$, $y_i \in Y$.

Every $u \in X \widehat{\otimes}_{\pi} Y$ can be written as $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ with $x_i \in X$, $y_i \in Y$. Then

$$\|u\|_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} \|x_i\| \|y_i\| : \sum_{i=1}^{\infty} \|x_i\| \|y_i\| < \infty, u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

Every $u \in X \widehat{\otimes}_{\pi} Y$ can be written as $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ with $x_i \in X$, $y_i \in Y$. Then

$$\|u\|_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} \|x_i\| \|y_i\| : \sum_{i=1}^{\infty} \|x_i\| \|y_i\| < \infty, u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

When is that infimum a minimum?

Every $u \in X \widehat{\otimes}_{\pi} Y$ can be written as $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ with $x_i \in X$, $y_i \in Y$. Then

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} ||x_i|| ||y_i|| : \sum_{i=1}^{\infty} ||x_i|| ||y_i|| < \infty, u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

When is that infimum a minimum?

Dantas-Jung-Roldán-Rueda Zoca (2022)

We say that $u \in X \widehat{\otimes}_{\pi} Y$ attain its projective norm if

$$u = \sum_{i=1}^{\infty} x_i \otimes y_i \quad \text{and} \quad \|u\|_{\pi} = \sum_{i=1}^{\infty} \|x_i\| \|y_i\|.$$

The set of those u is denoted by $\mathsf{NA}_{\pi}(X \widehat{\otimes}_{\pi} Y)$.

Every $u \in X \widehat{\otimes}_{\pi} Y$ can be written as $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ with $x_i \in X$, $y_i \in Y$. Then

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} ||x_i|| ||y_i|| : \sum_{i=1}^{\infty} ||x_i|| ||y_i|| < \infty, u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

When is that infimum a minimum?

Dantas-Jung-Roldán-Rueda Zoca (2022)

We say that $u \in X \widehat{\otimes}_{\pi} Y$ attain its projective norm if

$$u = \sum_{i=1}^{\infty} x_i \otimes y_i$$
 and $||u||_{\pi} = \sum_{i=1}^{\infty} ||x_i|| ||y_i||.$

The set of those u is denoted by $\mathsf{NA}_{\pi}(X \widehat{\otimes}_{\pi} Y)$.

Most of the results can be translated to other settings:

- Nuclear operators (tensors in $X^* \hat{\otimes}_{\pi} Y$ correspond to operators $X \to Y$)
- Symmetric tensors $(\widehat{\otimes}_{\pi,s,N}X \text{ is a predual of } \mathcal{P}(^{N}X))$

Dantas, Jung, Roldán, Rueda Zoca (2022)

 $NA(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ in the following cases:

- a) X and Y are finite dimensional.
- b) $X = \ell_1(I)$ and Y is any Banach space.
- c) X and Y are complex Hilbert spaces.

Dantas, Jung, Roldán, Rueda Zoca (2022)

 $NA(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ in the following cases:

- a) X and Y are finite dimensional.
- b) $X = \ell_1(I)$ and Y is any Banach space.

c) X and Y are complex Hilbert spaces.

Sketch of the proof.

a) Compactness

Dantas, Jung, Roldán, Rueda Zoca (2022)

 $NA(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ in the following cases:

- a) X and Y are finite dimensional.
- b) $X = \ell_1(I)$ and Y is any Banach space.

c) X and Y are complex Hilbert spaces.

Sketch of the proof.

- a) Compactness
- b) $\ell_1(I)\widehat{\otimes}_{\pi}Y = \ell_1(I,Y)$

Dantas, Jung, Roldán, Rueda Zoca (2022)

 $NA(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ in the following cases:

- a) X and Y are finite dimensional.
- b) $X = \ell_1(I)$ and Y is any Banach space.

c) X and Y are complex Hilbert spaces.

Sketch of the proof.

- a) Compactness
- b) $\ell_1(I)\widehat{\otimes}_{\pi}Y = \ell_1(I,Y)$
- c) Diagonalization

When every tensor attains its projective norm? Example (Dantas, Jung, Roldán, Rueda Zoca (2022)) Consider $u = \sum_{n=1}^{\infty} \frac{1}{2^n} e_n \otimes e_n \in \ell_1 \widehat{\otimes}_{\pi} \ell_2.$

When every tensor attains its projective norm? Example (Dantas, Jung, Roldán, Rueda Zoca (2022))

Consider $u = \sum_{n=1}^{\infty} \frac{1}{2^n} e_n \otimes e_n \in \ell_1 \widehat{\otimes}_{\pi} \ell_2$. Then $\|u\|_{\pi} \leq \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$.

Example (Dantas, Jung, Roldán, Rueda Zoca (2022)) Consider $u = \sum_{n=1}^{\infty} \frac{1}{2^n} e_n \otimes e_n \in \ell_1 \widehat{\otimes}_{\pi} \ell_2$. Then $||u||_{\pi} \leq \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$. Take $T : \ell_2 \to \ell_{\infty}$ given by T(x) = x. We have

$$\langle T, u \rangle = \sum_{n=1}^{\infty} \langle T, \frac{1}{2^n} e_n \otimes e_n \rangle = \sum_{n=1}^{\infty} \frac{1}{2^n} T(e_n)(e_n) = 1$$

Example (Dantas, Jung, Roldán, Rueda Zoca (2022)) Consider $u = \sum_{n=1}^{\infty} \frac{1}{2^n} e_n \otimes e_n \in \ell_1 \widehat{\otimes}_{\pi} \ell_2$. Then $||u||_{\pi} \leq \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$. Take $T : \ell_2 \to \ell_{\infty}$ given by T(x) = x. We have

$$\langle T, u \rangle = \sum_{n=1}^{\infty} \langle T, \frac{1}{2^n} e_n \otimes e_n \rangle = \sum_{n=1}^{\infty} \frac{1}{2^n} T(e_n)(e_n) = 1$$

Thus, $\|u\|_{\pi} = 1$ and u attains its projective norm.

Example (Dantas, Jung, Roldán, Rueda Zoca (2022)) Consider $u = \sum_{n=1}^{\infty} \frac{1}{2^n} e_n \otimes e_n \in \ell_1 \widehat{\otimes}_{\pi} \ell_2$. Then $||u||_{\pi} \leq \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$. Take $T : \ell_2 \to \ell_{\infty}$ given by T(x) = x. We have

$$\langle T, u \rangle = \sum_{n=1}^{\infty} \langle T, \frac{1}{2^n} e_n \otimes e_n \rangle = \sum_{n=1}^{\infty} \frac{1}{2^n} T(e_n)(e_n) = 1$$

Thus, $||u||_{\pi} = 1$ and u attains its projective norm.

Indeed, a representation $u = \sum_{n=1}^{\infty} x_n \otimes y_n \in X \widehat{\otimes}_{\pi} Y$ is optimal if and only if there is $T: X \to Y^*$ such that $T(x_n)(y_n) = ||x_n|| ||y_n|| \quad \forall n$

Example (Dantas, Jung, Roldán, Rueda Zoca (2022)) Consider $u = \sum_{n=1}^{\infty} \frac{1}{2^n} e_n \otimes e_n \in \ell_1 \widehat{\otimes}_{\pi} \ell_2$. Then $||u||_{\pi} \leq \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$. Take $T : \ell_2 \to \ell_{\infty}$ given by T(x) = x. We have

$$\langle T, u \rangle = \sum_{n=1}^{\infty} \langle T, \frac{1}{2^n} e_n \otimes e_n \rangle = \sum_{n=1}^{\infty} \frac{1}{2^n} T(e_n)(e_n) = 1$$

Thus, $\|u\|_{\pi} = 1$ and u attains its projective norm.

Indeed, a representation $u = \sum_{n=1}^{\infty} x_n \otimes y_n \in X \widehat{\otimes}_{\pi} Y$ is optimal if and only if there is $T: X \to Y^*$ such that $T(x_n)(y_n) = ||x_n|| ||y_n|| \quad \forall n$

Dantas, Jung, Roldán, Rueda Zoca (2022)

If every tensor on $X \widehat{\otimes}_{\pi} Y$ attains its projective norm, then every operator $T: X \to Y^*$ can be approximated by norm-attaining ones.

Example (Dantas, Jung, Roldán, Rueda Zoca (2022)) Consider $u = \sum_{n=1}^{\infty} \frac{1}{2^n} e_n \otimes e_n \in \ell_1 \widehat{\otimes}_{\pi} \ell_2$. Then $||u||_{\pi} \leq \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$. Take $T : \ell_2 \to \ell_{\infty}$ given by T(x) = x. We have

$$\langle T, u \rangle = \sum_{n=1}^{\infty} \langle T, \frac{1}{2^n} e_n \otimes e_n \rangle = \sum_{n=1}^{\infty} \frac{1}{2^n} T(e_n)(e_n) = 1$$

Thus, $\|u\|_{\pi} = 1$ and u attains its projective norm.

Indeed, a representation $u = \sum_{n=1}^{\infty} x_n \otimes y_n \in X \widehat{\otimes}_{\pi} Y$ is optimal if and only if there is $T: X \to Y^*$ such that $T(x_n)(y_n) = ||x_n|| ||y_n|| \quad \forall n$

Dantas, Jung, Roldán, Rueda Zoca (2022)

If every tensor on $X \widehat{\otimes}_{\pi} Y$ attains its projective norm, then every operator $T: X \to Y^*$ can be approximated by norm-attaining ones.

Thus, there are tensors not attaining its projective norm in $L_1(\mathbb{T})\hat{\otimes}_{\pi}\ell_2^2$, $L_1[0,1]\hat{\otimes}_{\pi}L_1[0,1]$, $\ell_p\hat{\otimes}_{\pi}G$ (1 ,...

Dantas, G.L., Jung, Rueda Zoca (2023)

Let X be a finite-dimensional polyhedral Banach space and Y is any dual Banach space. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$

Dantas, G.L., Jung, Rueda Zoca (2023)

Let X be a finite-dimensional polyhedral Banach space and Y is any dual Banach space. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$

Sketch of the proof.

$$B_{X \widehat{\otimes}_{\pi} Y} = \overline{\operatorname{conv}}(B_X \otimes B_Y)$$

Dantas, G.L., Jung, Rueda Zoca (2023)

Let X be a finite-dimensional polyhedral Banach space and Y is any dual Banach space. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$

Sketch of the proof.

$$B_{X \widehat{\otimes}_{\pi} Y} = \overline{\operatorname{conv}}(B_X \otimes B_Y)$$
$$= \overline{\operatorname{conv}}(\bigcup_{i=1}^n \{x_i\} \otimes B_Y)$$

Dantas, G.L., Jung, Rueda Zoca (2023)

Let X be a finite-dimensional polyhedral Banach space and Y is any dual Banach space. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$

Sketch of the proof.

$$B_{X\hat{\otimes}_{\pi}Y} = \overline{\operatorname{conv}}(B_X \otimes B_Y)$$

= $\overline{\operatorname{conv}}(\bigcup_{i=1}^n \{x_i\} \otimes B_Y)$
= $\operatorname{conv}(\bigcup_{i=1}^n \{x_i\} \otimes B_Y)$

Note that B_X is a polytope if and only if B_{X*} is a polytope.

Note that B_X is a polytope if and only if B_{X^*} is a polytope. If $B_{X^*} = \operatorname{conv}\{x_1^*, \ldots, x_n^*\}$ then the mapping

$$\begin{array}{ccc} X & \longrightarrow & \ell_{\infty}^{n} \\ x & \longmapsto & (x_{1}^{*}(x), \dots, x_{n}^{*}(x)) \end{array}$$

is a linear into isometry since

$$||x|| = \sup\{|x^*(x)| : x \in B_{X^*}\} = \max\{|x^*_i(x)| : i \in \{1, \dots, n\}\}$$

Note that B_X is a polytope if and only if B_{X^*} is a polytope. If $B_{X^*} = \operatorname{conv}\{x_1^*, \ldots, x_n^*\}$ then the mapping

$$\begin{array}{ccc} X & \longrightarrow & \ell_{\infty}^{n} \\ x & \longmapsto & (x_{1}^{*}(x), \dots, x_{n}^{*}(x)) \end{array}$$

is a linear into isometry since

$$||x|| = \sup\{|x^*(x)| : x \in B_{X^*}\} = \max\{|x^*_i(x)| : i \in \{1, \dots, n\}\}$$

Therefore, X is a subspace of Z with $Z^* = \ell_1^n$.

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^*\widehat{\otimes}_{\pi}Y) = X^*\widehat{\otimes}_{\pi}Y$.

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

These hypotheses are satisfied for $X \subset C(K)$ with K compact and scattered, such that X^* or Y has the AP.

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

These hypotheses are satisfied for $X \subset C(K)$ with K compact and scattered, such that X^* or Y has the AP.

The hypothesis of K being scattered cannot be removed, since

 $\mathsf{NA}(C(\mathbb{T})^* \widehat{\otimes}_{\pi} \ell_2^2) \neq C(\mathbb{T})^* \widehat{\otimes}_{\pi} \ell_2^2$

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

These hypotheses are satisfied for $X \subset C(K)$ with K compact and scattered, such that X^* or Y has the AP. The hypothesis of K being scattered cannot be removed, since

$$\mathsf{NA}(C(\mathbb{T})^* \widehat{\otimes}_{\pi} \ell_2^2) \neq C(\mathbb{T})^* \widehat{\otimes}_{\pi} \ell_2^2$$

We can take X^* the **Lipschitz-free space** $\mathcal{F}(M)$ for a metric space M satisfying one of the following conditions:

- a) *M* is countable and compact.
- b) M is uniformly discrete, countable, and there is a compact Hausdorff topology τ on M such that d is τ-lower semicontinuous, and V = {d(x, y) : (x, y) ∈ M²} ⊆ ℝ⁺₀ is a compact set.

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \hat{\otimes}_{\pi} Y) = X^* \hat{\otimes}_{\pi} Y$.

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

Lemma

Let X, Y be normed spaces and $T: X \to Y$ a linear isometry (into). Then, the operator $T^*: Y^* \to X^*$ is a quotient operator. In fact, given $x^* \in X^*$, there exists $y^* \in Y^*$ such that $T^*(y^*) = x^*$ and $||y^*|| = ||x^*||$.

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

Lemma

Let X, Y be normed spaces and $T: X \to Y$ a linear isometry (into). Then, the operator $T^*: Y^* \to X^*$ is a quotient operator. In fact, given $x^* \in X^*$, there exists $y^* \in Y^*$ such that $T^*(y^*) = x^*$ and $||y^*|| = ||x^*||$.

Sketch of the proof of the theorem.

Say $Y = E^*$. Then $T: X \widehat{\otimes}_{\varepsilon} E \to Z \widehat{\otimes}_{\varepsilon} E$ given by T(u) = u is a linear isometry.

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

Lemma

Let X, Y be normed spaces and $T: X \to Y$ a linear isometry (into). Then, the operator $T^*: Y^* \to X^*$ is a quotient operator. In fact, given $x^* \in X^*$, there exists $y^* \in Y^*$ such that $T^*(y^*) = x^*$ and $||y^*|| = ||x^*||$.

Sketch of the proof of the theorem.

Say $Y = E^*$. Then $T: X \hat{\otimes}_{\varepsilon} E \to Z \hat{\otimes}_{\varepsilon} E$ given by T(u) = u is a linear isometry. $T^*: Z^* \hat{\otimes}_{\pi} Y \to X^* \hat{\otimes}_{\pi} Y$.

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

Lemma

Let X, Y be normed spaces and $T: X \to Y$ a linear isometry (into). Then, the operator $T^*: Y^* \to X^*$ is a quotient operator. In fact, given $x^* \in X^*$, there exists $y^* \in Y^*$ such that $T^*(y^*) = x^*$ and $||y^*|| = ||x^*||$.

Sketch of the proof of the theorem.

Say $Y = E^*$. Then $T: X \hat{\otimes}_{\varepsilon} E \to Z \hat{\otimes}_{\varepsilon} E$ given by T(u) = u is a linear isometry. $T^*: Z^* \hat{\otimes}_{\pi} Y \to X^* \hat{\otimes}_{\pi} Y$. Given $u \in X^* \hat{\otimes}_{\pi} Y$ there is $\tilde{u} \in Z^* \hat{\otimes}_{\pi} Y = \ell_1(I) \hat{\otimes}_{\pi} Y$ with $T^*(\tilde{u}) = u$ and the same norm.

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

Lemma

Let X, Y be normed spaces and $T: X \to Y$ a linear isometry (into). Then, the operator $T^*: Y^* \to X^*$ is a quotient operator. In fact, given $x^* \in X^*$, there exists $y^* \in Y^*$ such that $T^*(y^*) = x^*$ and $||y^*|| = ||x^*||$.

Sketch of the proof of the theorem.

Say $Y = E^*$. Then $T: X \hat{\otimes}_{\varepsilon} E \to Z \hat{\otimes}_{\varepsilon} E$ given by T(u) = u is a linear isometry. $T^*: Z^* \hat{\otimes}_{\pi} Y \to X^* \hat{\otimes}_{\pi} Y$. Given $u \in X^* \hat{\otimes}_{\pi} Y$ there is $\tilde{u} \in Z^* \hat{\otimes}_{\pi} Y = \ell_1(I) \hat{\otimes}_{\pi} Y$ with $T^*(\tilde{u}) = u$ and the same norm.

 \tilde{u} admits an optimal representation

G.L., Guerrero-Viu, Rueda Zoca

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

Lemma

Let X, Y be normed spaces and $T: X \to Y$ a linear isometry (into). Then, the operator $T^*: Y^* \to X^*$ is a quotient operator. In fact, given $x^* \in X^*$, there exists $y^* \in Y^*$ such that $T^*(y^*) = x^*$ and $||y^*|| = ||x^*||$.

Sketch of the proof of the theorem.

Say $Y = E^*$. Then $T: X \hat{\otimes}_{\varepsilon} E \to Z \hat{\otimes}_{\varepsilon} E$ given by T(u) = u is a linear isometry. $T^*: Z^* \hat{\otimes}_{\pi} Y \to X^* \hat{\otimes}_{\pi} Y$. Given $u \in X^* \hat{\otimes}_{\pi} Y$ there is $\tilde{u} \in Z^* \hat{\otimes}_{\pi} Y = \ell_1(I) \hat{\otimes}_{\pi} Y$ with $T^*(\tilde{u}) = u$ and the same norm.

 \tilde{u} admits an optimal representation \Rightarrow the same holds for u.

Indeed, we have shown:

G.L., Guerrero-Viu, Rueda Zoca

Let Z be an Asplund space, $X \subset Z$ and Y be any dual space such that $NA_{\pi}(Z^* \widehat{\otimes}_{\pi} Y) = Z^* \widehat{\otimes}_{\pi} Y$. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

Indeed, we have shown:

G.L., Guerrero-Viu, Rueda Zoca

Let Z be an Asplund space, $X \subset Z$ and Y be any dual space such that $NA_{\pi}(Z^* \widehat{\otimes}_{\pi} Y) = Z^* \widehat{\otimes}_{\pi} Y$. If either X^* or Y has the approximation property, then $NA_{\pi}(X^* \widehat{\otimes}_{\pi} Y) = X^* \widehat{\otimes}_{\pi} Y$.

Also, in the above results the hypothesis of Y being a dual space can be weakened to Y being 1-complemented in its bidual.

G.L., Guerrero-Viu, Rueda Zoca

Let X, Y be Banach spaces such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$. Assume $Z \subset Y$ is a 1-complemented subspace. Then, $NA_{\pi}(X \widehat{\otimes}_{\pi} Z) = X \widehat{\otimes}_{\pi} Z$.

Recall that every tensor in $\ell_1(I)\widehat{\otimes}_{\pi}Y$ attains its projective norm for any Y.

Recall that every tensor in $\ell_1(I)\widehat{\otimes}_{\pi}Y$ attains its projective norm for any Y.

What are the spaces X such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ for every Y?

Recall that every tensor in $\ell_1(I)\widehat{\otimes}_{\pi}Y$ attains its projective norm for any Y.

What are the spaces X such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ for every Y?

G.L., Guerrero-Viu, Rueda Zoca

Assume that X is separable and $NA_{\pi}(X^*\widehat{\otimes}_{\pi}Y) = X^*\widehat{\otimes}_{\pi}Y$ for any Y. Then $B_X = \overline{conv}(\exp B_X)$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

There exist X, Y such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is **NOT** dense in $X \widehat{\otimes}_{\pi} Y$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

There exist X, Y such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is **NOT** dense in $X \widehat{\otimes}_{\pi} Y$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Assume X has the metric π -property. If Y has the metric π -property or Y is uniformly convex, then NA_{π}(X $\widehat{\otimes}_{\pi}$ Y) is dense in X $\widehat{\otimes}_{\pi}$ Y.

Dantas, Jung, Roldán, Rueda Zoca (2022)

There exist X, Y such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is **NOT** dense in $X \widehat{\otimes}_{\pi} Y$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Assume X has the metric π -property. If Y has the metric π -property or Y is uniformly convex, then NA_{π}(X $\widehat{\otimes}_{\pi}$ Y) is dense in X $\widehat{\otimes}_{\pi}$ Y.

A space X is said to have the **metric** π -**property** if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subset S_X$, we can find a finite-dimensional 1-complemented subspace $M \subset X$ and points $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon \ \forall i$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

There exist X, Y such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is **NOT** dense in $X \widehat{\otimes}_{\pi} Y$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Assume X has the metric π -property. If Y has the metric π -property or Y is uniformly convex, then NA_{π}(X $\hat{\otimes}_{\pi}$ Y) is dense in X $\hat{\otimes}_{\pi}$ Y.

A space X is said to have the **metric** π -**property** if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subset S_X$, we can find a finite-dimensional 1-complemented subspace $M \subset X$ and points $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon \ \forall i$. Equivalently, there are finite-rank projections $P_\alpha \colon X \to X$ with $||P_\alpha|| = 1$ and $P_\alpha x \to x$ for every $x \in X$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

There exist X, Y such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is **NOT** dense in $X \widehat{\otimes}_{\pi} Y$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Assume X has the metric π -property. If Y has the metric π -property or Y is uniformly convex, then NA_{π}(X $\hat{\otimes}_{\pi}$ Y) is dense in X $\hat{\otimes}_{\pi}$ Y.

A space X is said to have the **metric** π -**property** if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subset S_X$, we can find a finite-dimensional 1-complemented subspace $M \subset X$ and points $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon \ \forall i$. Equivalently, there are finite-rank projections $P_\alpha \colon X \to X$ with $||P_\alpha|| = 1$ and $P_\alpha x \to x$ for every $x \in X$.

monotone FDD \Rightarrow metric π property \Rightarrow metric approximation property

Dantas, Jung, Roldán, Rueda Zoca (2022)

There exist X, Y such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is **NOT** dense in $X \widehat{\otimes}_{\pi} Y$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Assume X has the metric π -property. If Y has the metric π -property or Y is uniformly convex, then NA_{π}(X $\widehat{\otimes}_{\pi}$ Y) is dense in X $\widehat{\otimes}_{\pi}$ Y.

A space X is said to have the **metric** π -**property** if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subset S_X$, we can find a finite-dimensional 1-complemented subspace $M \subset X$ and points $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon \ \forall i$. Equivalently, there are finite-rank projections $P_\alpha \colon X \to X$ with $||P_\alpha|| = 1$ and $P_\alpha x \to x$ for every $x \in X$.

monotone FDD \Rightarrow metric π property \Rightarrow metric approximation property

Key point: If *M* is 1-complemented in *X* then $M \widehat{\otimes}_{\pi} Y$ is (isometrically) a subspace of $X \widehat{\otimes}_{\pi} Y$.

Dantas, G.L., Jung, Rueda Zoca (2023)

 $NA_{\pi}(c_0 \widehat{\otimes}_{\pi} Y)$ is dense in $c_0 \widehat{\otimes}_{\pi} Y$ for any dual space Y.

Dantas, G.L., Jung, Rueda Zoca (2023)

 $NA_{\pi}(c_0 \widehat{\otimes}_{\pi} Y)$ is dense in $c_0 \widehat{\otimes}_{\pi} Y$ for any dual space Y. More generally, $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense if X is a polyhedral space with the metric π -property and Y is any dual space.

Dantas, G.L., Jung, Rueda Zoca (2023)

 $NA_{\pi}(c_0 \widehat{\otimes}_{\pi} Y)$ is dense in $c_0 \widehat{\otimes}_{\pi} Y$ for any dual space Y. More generally, $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense if X is a polyhedral space with the metric π -property and Y is any dual space.

G.L., Guerrero-Viu, Rueda Zoca

Suppose that for every $\varepsilon > 0$ and $x_1, \ldots, x_n \in X$, there exists a finite dimensional 1-complemented subspace $M \subseteq X$ and $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon$ for each $i = 1, \ldots, n$. Assume that $\overline{NA_{\pi}(M\hat{\otimes}_{\pi}Y)} = M\hat{\otimes}_{\pi}Y$. Then,

$$\overline{\mathsf{NA}_{\pi}(X\widehat{\otimes}_{\pi}Y)} = X\widehat{\otimes}_{\pi}Y.$$

Dantas, G.L., Jung, Rueda Zoca (2023)

 $NA_{\pi}(c_0 \widehat{\otimes}_{\pi} Y)$ is dense in $c_0 \widehat{\otimes}_{\pi} Y$ for any dual space Y. More generally, $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense if X is a polyhedral space with the metric π -property and Y is any dual space.

G.L., Guerrero-Viu, Rueda Zoca

Suppose that for every $\varepsilon > 0$ and $x_1, \ldots, x_n \in X$, there exists a finite dimensional 1-complemented subspace $M \subseteq X$ and $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon$ for each $i = 1, \ldots, n$. Assume that $\overline{\mathsf{NA}_{\pi}(M \widehat{\otimes}_{\pi} Y)} = M \widehat{\otimes}_{\pi} Y$. Then,

$$\overline{\mathsf{NA}_{\pi}(X\widehat{\otimes}_{\pi}Y)} = X\widehat{\otimes}_{\pi}Y.$$

 $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense in $X \widehat{\otimes}_{\pi} Y$ in the following cases:

- a) $X = L_1(\mu)$ for some measure μ , and Y is any Banach space.
- b) $X^* = L_1(\mu)$ and Y is 1-complemented in Y^{**} .
- c) X has the metric π -property and Y is a dual space with the RNP.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch of the proof

Given
$$u \in B_{X \widehat{\otimes}_{\pi} Y}$$
 with $||u||_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch of the proof

Given
$$u \in B_{X \widehat{\otimes}_{\pi} Y}$$
 with $||u||_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$.
Consider $F = \{z \in B_{X \widehat{\otimes}_{\pi} Y} : \langle A, z \rangle = 1\}$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch of the proof

Given
$$u \in B_{X \widehat{\otimes}_{\pi} Y}$$
 with $||u||_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$.
Consider $F = \{z \in B_{X \widehat{\otimes}_{\pi} Y} : \langle A, z \rangle = 1\}$.
 $F = \overline{\operatorname{conv}}(\operatorname{ext} F)$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch of the proof

Given $u \in B_{X \widehat{\otimes}_{\pi} Y}$ with $||u||_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$. Consider $F = \{z \in B_{X \widehat{\otimes}_{\pi} Y} : \langle A, z \rangle = 1\}$. $F = \overline{\operatorname{conv}}(\operatorname{ext} F)$. Since F is a face of $B_{X \widehat{\otimes}_{\pi} Y}$, ext $F \subset \operatorname{ext} B_{X \widehat{\otimes}_{\pi} Y}$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch of the proof

Given $u \in B_{X \widehat{\otimes}_{\pi} Y}$ with $||u||_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$. Consider $F = \{z \in B_{X \widehat{\otimes}_{\pi} Y} : \langle A, z \rangle = 1\}$. $F = \overline{\operatorname{conv}}(\operatorname{ext} F)$. Since F is a face of $B_{X \widehat{\otimes}_{\pi} Y}$, ext $F \subset \operatorname{ext} B_{X \widehat{\otimes}_{\pi} Y}$. Under these hypotheses, $\operatorname{ext}(B_{X \widehat{\otimes}_{\pi} Y}) \subset B_X \otimes B_Y$ (Collins-Ruess (1983))

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch of the proof

Given $u \in B_{X \widehat{\otimes}_{\pi} Y}$ with $||u||_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$. Consider $F = \{z \in B_{X \widehat{\otimes}_{\pi} Y} : \langle A, z \rangle = 1\}$. $F = \overline{\operatorname{conv}}(\operatorname{ext} F)$. Since F is a face of $B_{X \widehat{\otimes}_{\pi} Y}$, $\operatorname{ext} F \subset \operatorname{ext} B_{X \widehat{\otimes}_{\pi} Y}$. Under these hypotheses, $\operatorname{ext}(B_{X \widehat{\otimes}_{\pi} Y}) \subset B_X \otimes B_Y$ (Collins-Ruess (1983)) Thus,

$$u \in \overline{\operatorname{conv}}\{x \otimes y \in S_X \otimes S_Y : A(x,y) = 1\}$$

Some related questions

Is every extreme point of $B_{X \widehat{\otimes}_{\pi} Y}$ of the form $x \otimes y$ with $x \in B_X$, $y \in B_Y$?

Some related questions

Is every extreme point of $B_{X \widehat{\otimes}_{\pi} Y}$ of the form $x \otimes y$ with $x \in B_X$, $y \in B_Y$?

Are there X, Y such that the set of operators attaining its nuclear norm is **NOT** dense in $\mathcal{N}(X, Y)$?

Is every extreme point of $B_{X \widehat{\otimes}_{\pi} Y}$ of the form $x \otimes y$ with $x \in B_X$, $y \in B_Y$?

Are there X, Y such that the set of operators attaining its nuclear norm is **NOT** dense in $\mathcal{N}(X, Y)$?

Is there X such that the set of symmetric tensors attaining its projective norm is **NOT** dense in $\widehat{\otimes}_{\pi,s,N}X$?

Thank you for your attention!